高中数学 第一章§22分层抽样与系统抽样导学案 北师大版必修3_第1页
高中数学 第一章§22分层抽样与系统抽样导学案 北师大版必修3_第2页
高中数学 第一章§22分层抽样与系统抽样导学案 北师大版必修3_第3页
高中数学 第一章§22分层抽样与系统抽样导学案 北师大版必修3_第4页
高中数学 第一章§22分层抽样与系统抽样导学案 北师大版必修3_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.2分层抽样与系统抽样1理解分层抽样与系统抽样的概念2通过对实例的分析,了解分层抽样与系统抽样的方法1分层抽样(1)定义:将总体按其_分成若干类型(有时称作层),然后在每个类型中按照_随机抽取一定的样本这种抽样方法通常叫作分层抽样,有时也称为类型抽样(2)分层抽样的步骤:分层:按某种_将总体分成若干部分(层)按_确定每层抽取个体的个数各层分别按简单随机抽样或其他的抽样方法抽取样本综合每层抽样,组成样本应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构的一致性(2)分层抽样为保证每个个体等

2、可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与该层个体数量的比与样本容量与总体容量的比相等(3)当总体个体差异明显时,采用分层抽样【做一做11】某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,应采用的抽样方法是()a简单随机抽样 b分层抽样c系统抽样 d分类抽样【做一做12】当前,国家正分批修建经济适用房以解决低收入家庭住房紧张的问题已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,则

3、应从甲社区中抽取低收入家庭的户数为()a40 b30c20 d362系统抽样(1)定义:将总体中的个体进行编号,等距分组,在第一组中,按照_抽取第一个样本,然后按_(称为抽样距)抽取其他样本这种抽样方法称为系统抽样,有时也叫等距抽样或机械抽样(2)注意:编号时要随机编号,否则抽取的样本代表性差(3)系统抽样的步骤:采用随机抽样的方法将总体中的n个个体_确定分段间隔k(kn),将整体按编号进行分段(组)在第_段用简单随机抽样确定起始个体的编号l(ln,0lk)按照一定的规则抽取样本,通常是将起始编号l_上间隔k得到第2个个体编号lk,再加上k得到第3个个体编号l2k,这样继续下去,直到获取整个样

4、本系统抽样的特征:(1)当总体中个体无差异且个体数目较大时,采用系统抽样(2)将总体分成均衡的若干部分指的是,将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,间隔一般为k表示不超过.(3)预先制定的规则指的是,在第一段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号【做一做21】下列抽样试验中,最适宜用系统抽样法的是()a某市的4个区共有2 000名学生,且4个区的学生人数之比为3282,从中抽取200人入样b从某厂生产的2 000个电子元件中随机抽取5个入样c从某厂生产的2 000个电子元件中随机抽取200个入样d从某厂生产的20个电子元件中随

5、机抽取5个入样【做一做22】一个总体中有1 000个个体,现用系统抽样抽取一个容量为100的样本,则编号后,按从小到大的编号顺序平均分成_组,每组有_个个体1系统抽样中如何对总体中的每个个体进行合理分段?剖析:系统抽样操作的要领是先将个体数较多的总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取1个个体,得到所需样本由于抽样的间隔相等,因此系统抽样又称为等距抽样(或叫机械抽样),所以系统抽样中必须对总体中的每个个体进行合理(即等距)分段若从容量为n的总体中抽取容量为n的样本,用系统抽样时,应先将总体中的各个个体编号,再确定分段间隔k,以便对总体进行分段当是整数时,取k为分段间隔即

6、可,如n100,n20,则分段间隔k5,也就是将100个个体平均每5个分为一段(组)当不是整数时,应先从总体中随机剔除一些个体,使剩余个体数n能被n整除,这时分段间隔k,如n101,n20,则应先用简单随机抽样从总体中剔除1个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k5,也就是说,只需将100个个体平均分为20段(组)一般地,用简单随机抽样的方法从总体中剔除部分个体,其个数为总体中的个体数除以样本容量所得的余数上述过程中,总体中的每个个体被取出(或被剔除)的可能性相等,也就是每个个体不被选取(或不被剔除)的可能性也相等,所以在整个抽样过程中每个个体被抽取的机会仍然都相等

7、,这说明使用系统抽样法抽取样本的过程是公平的2分层抽样中各层入样的个体数应如何确定?剖析:当总体由差异明显的几部分组成时,应将总体分成互不交叉的几部分,其中所分成的每一部分叫层,然后按照各部分所占的比例,从各部分中独立抽取一定数量的个体,再将各部分抽出的个体合在一起作为样本,这就是分层抽样由于层与层之间有明显的区别,而层内个体间差异不明显,为了使样本更能充分地反映总体的情况,抽取样本时,必须照顾到各个层的个体所以每层中所抽取的个体数应按各层个体数在总体中所占的比例抽取,也就是各层抽取的比例都等于样本容量在总体中的比例,即抽样比.这样抽取能使所得到的样本结构与总体结构相同,可以提高样本对总体的代

8、表性在实际操作时,应先计算出抽样比k,再按抽样比确定每层需要抽取的个体数:抽样比该层个体数目该层个体数目题型一 分层抽样中的计算问题【例题1】某校共有师生1 600人,其中教师有100人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取的学生数为_反思:一个总体中有m个个体,用分层抽样方法从中抽取一个容量为n(nm)的样本,某层中含有x(xm)个个体,在该层中抽取的个体数目为y,则有y,该等式中含有四个量,已知其中任意三个量,就能求出第四个量题型二 分层抽样的应用【例题2】某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人

9、数如下表所示:很喜爱喜爱一般不喜爱2 4354 5673 9261 072电视台为了进一步了解观众的具体想法和意见,打算从中再抽取60人进行更为详细的调查,应怎样进行抽样?分析:反思:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比题型三 为整数的系统抽样问题【例题3】为了了解某地区今年高一学生期末考试的数学成绩,打算从参加考试的15 000名学生的数学成绩中用系统抽样的方法抽取容量为150的样本,请写出抽取过程分析:按照系统抽样的步骤进行反思:当总体容量n能被样本容量n整除时,分段间隔k;当用系统抽样

10、抽取样本时,通常是将起始数s加上间隔k得到第2个个体编号sk,再加k得到第3个个体编号s2k,依次进行下去,直到获取整个样本题型四 不是整数的系统抽样问题【例题4】从某厂生产的802辆轿车中抽取80辆测试某项性能请合理选择抽样方法进行抽样,并写出抽样过程分析:反思:当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等,剔除几个个体后使总体中剩余的个体能被样本容量整除,然后再按系统抽样方法抽取样本题型五 易错辨析【例题5】要从某学校的10 013名学生中抽取100名进行健康检查,采用何种抽样方法较好,并写出过程错

11、解:由于总体个数为10 013,数量较大,而且都是学生,差别不大,因而应该采用系统抽样,具体过程如下:由系统抽样的步骤先分为100段,其中前87段每段100人,后13段每段101人,再在第一段中用简单随机抽样确定起始个体编号l;最后将l100,l200,l9 913分别抽出得第2,3,100组中的编号,从而获得整个样本错因分析:上面的解法违背了系统抽样的等距均分原理,抽出的个体不都是处在每段的同一位置上,前87段与后13段各自处的位置不一样,导致抽样的不公平性,所以解法是错误的,必须先要随机地剔除13人1下列问题中,最适合用分层抽样抽取样本的是()a从10名同学中抽取3人参加座谈会b某社区有3

12、00户家庭,其中高收入的家庭75户,中等收入的家庭180户,低收入的家庭45户,为了了解生活购买力的某项指标,要从中抽取一个容量为50户的样本c从1 000名工人中,抽取100人调查上班途中所用的时间d从生产流水线上,抽取样本检查产品质量2(2011西安市一中月考,1)我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是()a分层抽样 b抽签抽样c随机抽样 d系统抽样3(2012江苏高考,2)某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_名学生4若总体中含有1 645个个体,采用系统

13、抽样的方法从中抽取容量为35的样本,则编号后确定编号分为_段,分段间隔k_,每段有_个个体5某学校有在编人员200人,其中行政人员20人,教师140人,后勤人员40人,教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽样,并写出抽样过程答案:基础知识梳理1(1)属性特征所占比例(2)特征所占比例【做一做11】b【做一做12】a抽样比是,则应从甲社区中抽取低收入家庭的户数为36040.2(1)简单随机抽样分组的间隔(3)编号一加【做一做21】c【做一做22】10010典型例题领悟【例题1】75抽样比为,该校有学生1 6001001 500人,则抽取的学生数为1 5

14、0075.【例题2】解:采用分层抽样的方法,抽样比为.“很喜爱”的有2 435人,应抽取2 43512(人);“喜爱”的有4 567人,应抽取4 56723(人);“一般”的有3 926人,应抽取3 92620(人);“不喜爱”的有1 072人,应抽取1 0725(人)因此,采用分层抽样的方法在“很喜爱”、“喜爱”、“一般”、“不喜爱”的人中分别抽取12人、23人、20人和5人【例题3】解:(1)对全体学生的数学成绩进行编号:1,2,3,15 000.(2)分段:由于样本容量与总体容量的比是1100,所以我们将总体平均分为150个部分,其中每一部分包括100个个体(3)在第一部分即1号到100

15、号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,再顺次抽取156,256,356,14 956,这样就得到一个容量为150的样本【例题4】解:由于总体及样本中的个体数较多,且无明显差异,因此采用系统抽样的方法,步骤如下:第一步先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步将余下的800辆轿车编号为1,2,800,并均匀分成80段,每段含k10个个体;第三步从第1段即1,2,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步从5开始,再将编号为15,25,795的个体抽出,得到一个容量为80的样本【例题5】正解:由于总体个数为10 013,数量较大,而且都是学生,差别不大,因而应采用系统抽样法,具体过程如下:由系统抽样的步骤可知编号分段时,10 013100不为整数,先从总体中随机剔除13人,再按如下步骤操作:采用随机的方式将总体中的个体编号为1,2,3,10 000;把总体分成100段,每段100人;在第一段中用简单随机抽样确定起始个体的编号l;将l100,l200,l9 900分别抽出得到第2,3,100组中的各个编号,从而获得整个样本随堂练习巩固1b2d315根据分层抽样的特点,可得高二年级学生人数占学生总人数的,因此在样本中,高二年级的学生所占比例也应该为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论