外文翻译--可以行走、翻身并站立的有两手和两足的机器人_第1页
外文翻译--可以行走、翻身并站立的有两手和两足的机器人_第2页
外文翻译--可以行走、翻身并站立的有两手和两足的机器人_第3页
外文翻译--可以行走、翻身并站立的有两手和两足的机器人_第4页
外文翻译--可以行走、翻身并站立的有两手和两足的机器人_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 毕业设计(论文)外文资料翻译系部: 机械工程系 专 业: 机械工程及自动化 姓 名: 学 号: 外文出处:department of mechano-informatics the university of tokyo 附 件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 签名: 年 月 日附件1:外文翻译可以行走、翻身并站立的有两手和两足的机器人摘要在实践中把注意力集中在灵活性和智能反应,更重要的是创想,不是一个不会倒下的机器人,而是一个倒下来可以站起来的机器人。本文提出了一种两个手臂的两足机器人,即一个模仿机器人,它可以两足步行、滚动和站起来。该机器人由一个头,两个胳膊和两条

2、腿组成。基于远程脑,设计了双足机器人的控制系统,解决了机器人大脑内的机构无法与无线电联系的问题。这种远程脑使机器人具有强大的计算头脑和有多个关节轻盈的身体。该机器人能够保持平衡并长期使用跟踪视觉,通过一组垂直传感器检测是否跌倒或没跌倒,并通过两个手臂和两条腿履行起立动作。用实际例子对所开发的系统和实验结果进行了描述。1 引言随着人类儿童的娱乐,为了了解双足运动,有站起来动作的能力是必不可少的。为了建立一个试图了解两足自动步行的机器人,该机构应设计有为了支持起立结构以及为了知道是否躺着或不是的传感器。当双足机器人有手臂时,它可以执行各种行为以及步行。研究两足步行机器人已提出并实现了123 。它主

3、要集中在动态步行,作为一种先进的控制问题来对待它345 。然而,在现实世界中把注意力集中在智能反应,更重要的是创想,而不是一个不会倒下的机器人,是一个倒下来可以站起来的机器人。为了建立一个如果它倒下可以站起来的机器人,机器人需要传感系统为了保持身体平衡,并知道它是否跌倒或没有跌倒。虽然视觉是一个机器人最重要的遥感功能,但由于视觉系统规模和实力的限制,建立一个强大的视觉系统在机器人自己的身体上是困难的。如果我们想进一步要求动态反应和智能推理经验的基础上基于视觉的机器人行为研究,那么机器人机构要轻巧以足够迅速作出反应,并有许多自由度为了显示驱动各种智能行为。至于有腿机器人678,只有一个以视觉为基

4、础的小小的研究9。所面临的困难是在推进基于视觉的有腿机器人实验研究上由硬件的显示所限制。在有限的硬件基础上是很难继续发展先进的视觉软件。为了解决这些问题和推进基于视觉的行为研究,我们已经通过建立远程脑的机器人采取了一项新的办法。身体和大脑相连的无线链路使用无线照相机和远程控制机器人,因为机体并不需要电脑板,所以它变得更加容易建立一个有许多自由度驱动的轻盈机身。在这项研究中,我们制定了一个使用远程脑机器人的环境并且使它执行平衡的视觉和起立的手扶两足机器人,通过胳膊和腿的合作,该系统和实验结果说明如下。图1 远程脑系统的硬件配置图2 两组机器人的身体结构2 远程脑系统远程脑的机器人不使用自己大脑内

5、的机构。它留大脑在控制系统中并且与它用无线电联系。这使我们能够建立一个自由的身体和沉重大脑的机器人。身体和大脑的定义软件和硬件之间连接的接口。身体是为了适应每个研究项目和任务而设计的。这使我们提前进行研究各种真实机器人系统10。一个主要利用远程脑机器人是基于超级并行计算机上有一个大型及重型颅脑。虽然硬件技术已经先进了并拥有生产功能强大的紧凑型视觉系统的规模,但是硬件仍然很大。摄像头和视觉处理器的无线连接已经成为一种研究工具。远程脑的做法使我们在基于视觉机器人技术各种实验问题的研究上取得进展。另一个远程脑的做法的优点是机器人机体轻巧。这开辟了与有腿移动机器人合作的可能性。至于动物,一个机器人有4

6、个可以行走的四肢。我们的重点是基于视觉的适应行为的4肢机器人、机械动物,在外地进行试验还没有太多的研究。大脑是提出的在母体环境中通过接代遗传 。大脑和母体可以分享新设计的机器人。一个开发者利用环境可以集中精力在大脑的功能设计上。对于机器人的大脑被提出在一个母体的环境,它可以直接受益于母体的演变 ,也就是说当母体升级到一个更强大的计算机时该软件容易获得权利。图1显示了远程脑系统由大脑基地,机器人的身体和大脑体界面组成。在远程脑办法中大脑和身体接触面之间的设计和性能是关键。我们目前的执行情况采取了完全远程脑的办法,这意味着该机体上没有电脑芯片。目前系统由视觉子系统,非视觉传感器子系统和运动控制子系

7、统组成。一个障碍物可以从机器人机体的摄像机上接收视频信号。每个视觉子系统由平行放置的8个显示板组成。一个机体仅有一个运动指令信号和传输传感器的信号的接收器。该传感器信息从视频发射机传输。传输其他传感器的信息是可能的,如触摸和伺服错误通过视频传输的信号整合成一个视频图像11 。该驱动器是包括一个模拟伺服电路和接收安置器的连接模块。离子参考价值来自于动作接收器。该动作控制子系统可以通过13个波段处理多达104个驱动器和每20兆秒发送参考价值的所有驱动器。3 两个手和足的机器人图2显示了两个手和足的机器人的结构。机器人的主要电力组成部分是连接着伺服驱动器控、制信号接收器定位传感器,发射机,电池驱动器

8、,传感器和一个摄像头,视频发射机,没有电脑板。伺服驱动器包括一个齿轮传动电动机和伺服电路模拟的方块。控制信号给每个伺服模块的位置参考。扭矩伺服模块可覆盖2kgcm -1 4kgcm的速度约0 .2sec/60deg。控制信号传输无线电路编码的8个参考值。该机器人在图2中有两个接收器模块在芯片上以控制16个驱动器。图3说明了方向传感器使用了一套垂直开关。垂直开关是水银开关。当水银开关(a)是倾斜时,下拉关闭的汞之间接触的两个电极。方向传感器安装两个汞开关,如图显示在(b)项。该交换机提供了两个比特信号用来检测4个方向的传感器如图所示在(c)项。该机器人具有在其胸部的传感器并且它可以区分四个方向:

9、面朝上,面朝下,站立和颠倒。该机体的结构设计和模拟在母亲环境下。该机体的运动学模型是被描述面向一个口齿不清的对象,这使我们能够描述几何实体模型和窗口界面设计的行为。图3 传感器的两个水银定位开关图4显示远程脑机器人的一些环境项目分类 。这些分类为扩大发展各种机器人提供了丰富的平台。图4 层次分类4 基于视觉的平衡该机器人可以用两条腿站起来。因为它可以改变机体的重心,通过控制踝关节的角度,它可以进行静态的两足行走。如果地面不平整或不稳定,在静态步行期间机器人必需控制她的身体平衡。 为了视觉平衡和保持移动平稳,它要有高速的视觉系统。我们已经用相关的芯片13制定了一项跟踪视觉板。这个视觉板由带着特别

10、lsi芯片(电位14 :运动估计处理器)扩张转换器组成 ,与执行本地图像块匹配。图5 保持人类机器人的平衡行为该输入处理器是作为参考程序块和一个图像搜索窗口形象.该大小的参考程序块可达16*16 像素.该大小的搜索窗口取决于参考块的大小通常高达32*32像素,以便它能够包括16 * 16且匹配。该处理器计算价值256萨赫勒(总和绝对差)之间的参考块和256块在搜索窗口,还找到最佳匹配块,这就是其中的最低萨赫勒价值。当目标平移时块匹配是非常有力的。然而,普通的块匹配方法当它旋转时无法跟踪目标。为了克服这一困难,我们开发了一种新方法,跟随真正旋转目标的候选模板。旋转模板法首先生成所有目标图像旋转,

11、并且几个足够的候选参考模板被选择并跟踪前面图的场景相匹配。图5展示了一个平衡实验。在这个实验中机器人站在倾斜的木板上。机器人视觉跟踪着前面的场景。它会记住一个物体垂直方向作为视觉跟踪的参照并产生了旋转图像的参考图象。如果视觉跟踪的参考对象使用旋转图像,它可以衡量身体旋转。为了保持身体平衡,机器人的反馈控制其身体旋转来控制中心机体的重心。旋转视觉跟踪15可以跟踪视频图像率。图6 双足步行图7 双足步行实验5 双足步行如果一个双足机器人可以自由的控制机器人的重心,它可以执行双足行走。展示在图7的机器人在脚踝的位置有以左和以右的角度,它可以在特定的方式下执行双足行走。该一个周期的一系列运动由八个阶段

12、组成,如图6所示 。一个步骤包括四个阶段;移动脚的重力中心,抬腿,向前移动,换腿。由于身体被描述用实体模型,根据重心参数机器人可以产生一个机构配置移动重力中心。这一运动后,机器人可以抬起另一条腿并且向前走。在抬腿过程中机器人必须操纵机构配置,以保持支持脚上的重心。依赖于重心的高度作为平衡的稳定性,机器人选择合适的膝盖角度.图 7显示了一系列双足机器人行走的实验。图8 一系列滚动和站立运动6 滚动和站立 图8显示了一系列滚动,坐着和站起来的动作。这个动作要求胳膊和腿之间的协调。由于步行机器人有一个电池,该机器人可使用电池的重量做翻转动作。当机器人抬起左腿,向后移动左臂且右臂向前,它可以得到机体周

13、围的旋转力矩。如果身体开始转动,右腿向后移动并且左脚依赖脸部返回原来位置。翻滚运动身体的变化方向从仰视到俯视。它可通过方向传感器核查。得到正面朝下的方向后,向下移动机器人的手臂以坐在两个脚上。这个动作引起了双手和地面之间的滑动。如果手臂的长度不够达到在脚上的身体重心,这个坐的运动要求有手臂来推动运动。站立运动是被控制的,以保持平衡。图9 双足步行机器人的使用功能7 通过集成传感器网络转型的综合 为了使上述描述的基本动作成为一体,我们通过一种方法来描述一种被认为是根据传感器状况的网络转型。图9显示了综合了基本动作机器人的状态转移图:两足行走,滚动,坐着和站立。这种一体化提供了机器人保持行走甚至跌

14、倒时的能力。 普通的双足行走是由两步组成,连续的左腿在前和右腿在前。这个姿势依赖于背部和脸部和站立是一样的 。也就是说,机器人的机体形状是相同的,但方向是不同的。该机器人可以探测机器人是否依赖于背部或面部使用方向传感器。当机器人发觉跌倒时,它改变了依赖于背部或腹部通过移动不确定姿势的状况。如果机器人依赖于背部起来 ,一系列的动作将被计划执行:翻转、坐下和站立动作。如果这种情况是依赖于脸部 ,它不执行翻转而是移动手臂执行坐的动作。8 结束语本文提出了一个两手臂的可以执行静态双足行走,翻转和站立动作的机器人。建立这种行为的关键是远程脑方法。正如实验表明,无线技术允许机体自由移动。这似乎也改变我们概

15、念化机器人的一种方式。在我们的实验室已经发展一种新的研究环境,更适合于机器人和真实世界的人工智能。 这里提出的机器人是一个有腿的机器人。同样有腿的运动,需要动态的视觉反馈控制,其视觉装置的行为可以证明视觉系统和远程脑系统的效果。我们的视觉系统是基于高速块匹配功能实施大规模集成电路的运动估算。视觉系统提供了与人交往作用的机体活力和适应能力。机械狗表现出建立在跟踪测距的基础上的适应行为。机械类人猿已经表明跟踪和记忆的视觉功能和它们在互动行为上的综合。 一个两手臂机器人的研究为智能机器人研究提供了一个新的领域。因为它的各种行为可能造成一个灵活的机体。远程脑方法将支持以学习为基础行为的研究领域。下一个

16、研究任务包括:如何借鉴人类行为以及如何让机器人提高自身的学术行为。 参考文献 : 略附件2:外文原文two-armed bipedal robot that can walk, roll over and stand upmasayuki inaba, fumio kanehirosatoshi kagami, hirochika inouedepartment of mechano-informaticsthe university of tokyo7-3-l hongo, bunkyo-ku, 113 tokyo, japanabstractfocusing attention on fl

17、exibility and intelligent reactivity in the real world, it is more important to build, not a robot that wont fall down, but a robot that can get up if it does full down. this paper presents a research on a two-armed bipedal robot, an apelike robot, which can perform biped walking, rolling over and s

18、tanding up. the robot consists of a head, two arms, and two legs. the control system of the biped robot is designed based on the remote-brained approach in which a robot does not bring its own brain within the body and talks with it by radio links. this remote-brained approach enables a robot to hav

19、e both a heavy brain with powerful computation and a lightweight body with multiple joints. the robot can keep balance in standing using tracking vision, detect whether it falls down or not by a set of vertical sensors, and perform getting up motion colaborating two arms and two legs. the developed

20、system and experimental results are described with illustrated real examples.1 introductionas human children show, it is indispensable to havecapability of getting up motion in order to learn bipedlocomotion. in order to build a robot which tries to learn biped walking automatically, the body should

21、 be designed to have structures to support getting up as well as sensors to know whether it lays or not.when a biped robot has arms, it can perform various behaviors as well as walking. research on biped walking robots has presented with realization123.it has mainly focused on the dynamics in walkin

22、g,treating it as an advanced problem in control345.however, focusing attention on the intelligent reactivity in the real world, it is more important to build, not a robot that wont fall down, but a robot that can get up if it does fall down. in order to build a robot that can get up if it falls down

23、, the robot needs sensing system to keep the body balance and to know whether it falls down or not. although vision is one of the most important sensing functions of a robot, it is hard to build a robot with a powerful vision system on its own body because of the size and power limitation of a visio

24、n system. ifwe want to advance research on vision-based robot behaviors requiring dynamic reactions and intelligent reasoning based on experience, the robot body has to be lightweight enough to react quickly and have many dofs in actuation to show a variety of intelligent behaviors.as for the legged

25、 robot 6 7 8,there is only a little research on vision-based behaviors9. the difficulties in advancing experimental research for vision-based legged robots are caused by the limitation of the vision hardware. it is hard to keep developing advanced vision software in limited hardware. in order to sol

26、ve the problems and advance the study of vision-based behaviors, we have adopted a new approach through building remote-brained robots. the body and the brain are connected by wireless links by using wireless cameras and remote-controlled actuators.as a robot body does not need computers on-board,it

27、 becomes easier to build a lightweight body with many dofs in actuation.in this research, we developed a two-armed bipedal robot using the remote-brained robot environment and made it to perform balancing based on vision and getting up through cooperating arms and legs. the system and experimental r

28、esults are described below. 2 the remote-brained systemthe remote-brained robot does not bring its own brain within the body. it leaves the brain in the mother environment and communicates with it by radio links. this allows us to build a robot with a free body and a heavy brain. the connection link

29、 between the body and the brain defines the interface between software and hardware. bodies are designed to suit each research project and task. this enables us advance in performing research with a variety of real robot systems10.a major advantage of remote-brained robots is that the robot can have

30、 a large and heavy brain based on super parallel computers. although hardware technology for vision has advanced and produced powerful compact vision systems, the size of the hardware is still large. wireless connection between the camera and the vision processor has been a research tool. the remote

31、-brained approach allows us to progress in the study of a variety of experimental issues in vision-based robotics.another advantage of remote-brained approach is that the robot bodies can be lightweight. this opens up the possibility of working with legged mobile robots. as with animals, if a robot

32、has 4 limbs it can walk. we are focusing on vision-based adaptive behaviors of 4-limbed robots, mechanical animals, experimenting in a field as yet not much studied.the brain is raised in the mother environment in-heritedover generations. the brain and the mother environment can be shared with newly

33、 designed robots. a developer using the environment can concentrate on the functional design of a brain. for robots where the brain is raised in a mother environment, it can benefit directly from the mothers evolution, meaning that the software gains power easily when the mother is upgraded to a mor

34、e powerful computer.figure 1 shows the configuration of the remote-brainedsystem which consists of brain base, robot body and brain-body interface.in the remote-brained approach the design and theperformance of the interface between brain and body is the key. our current implementation adopts a full

35、y remotely brained approach, which means the body has no computer onboard. current system consists of the vision subsystems, the non-vision sensor subsystem and the motion control subsystem. a block can receive video signals from cameras on robot bodies. the vision subsystems are parallel sets each

36、consisting of eight vision boards.a body just has a receiver for motion instruction signals and a transmitter for sensor signals. the sensor information is transmitted from a video transmitter. it is possible to transmit other sensor information such as touch and servo error through the video transm

37、itter by integrating the signals into a video image11. the actuator is a geared module which includes an analog servo circuit and receives a posit.ion reference value from the motion receiver. the motion control subsystem can handle up to 104 actuators through 13 wave bands and send the reference va

38、lues to all the actuators every 20msec.3 the two-armed bipedal robotfigure 2 shows the structure of the two-armed bipedal robot. the main electric components of the robot are joint servo actuators, control signal receivers, an orientation sensor with transmitter, a battery set for actuators and sens

39、ors sensor and a camera with video transmitter. there is no computer on-board. a servo actuator includes a geared motor and analog servo circuit in the box. the control signal to each servo module is position reference. the torque of servo modules available cover 2kgcm - 14kgcm with the speed about

40、0.2sec/60deg. the control signal transmitted on radio link encodes eight reference values. the robot in figure 2 has two receiver modules onboard to control 16 actuators.figure 3 explains the orientation sensor using a set of vertical switches. the vertical switch is a mercury switch. when the mercu

41、ry switch (a) is tilted, the drop of mercury closes the contact between the two electrodes. the orientation sensor mount two mercury switches such as shown in (b). the switches provides two bits signal to detect four orientation of the sensor as shown in (c). the robot has this sensor at its chest a

42、nd it can distinguish four orientation; face up, face down, standing and upside down.the body structure is designed and simulated in the mother environment. the kinematic model of the body is described in an object-oriented lisp, euslisp which has enabled us to describe the geometric solid model and

43、 window interface for behavior design.figure 4 shows some of the classes in the programming environent for remote-brained robot written in euslisp. the hierachy in the classes provides us with rich facilities for extending development of various robots. 4 vision-based balancing the robot can stand u

44、p on two legs. as it can change the gravity center of its body by controling the ankle angles, it can perform static bipedal walks. during static walking the robot has to control its body balance if the ground is not flat and stable.in order to perform vision-based balancing it is re-quired to have

45、high speed vision system to keep ob-serving moving schene. we have developed a tracking vision board using a correlation chipl3. the vision board consists of a transputer augmented with a special lsi chip(mep14 : motion estimation processor) which performs local image block matching.the inputs to th

46、e processor mep are an image as a reference block and an image for a search window.the size of the reference block is up to 16 by 16 pixels.the size of the search window depends on the size of the reference block is usually up to 32 by 32 pixels so that it can include 16 * 16 possible matches. the p

47、rocessor calculates 256 values of sad (sum of absolute difference) between the reference block and 256 blocks in the search window and also finds the best matching block, that is, the one which has the minimum sad value.block matching is very powerful when the target moves only in translation. howev

48、er, the ordinary block matching method cannot track the target when it rotates. in order to overcome this difficulty, we developed a new method which follows up the candidate templates to real rotation of the target. the rotated template method first generates all the rotated target images in advanc

49、e, and several adequate candidates of the reference template are selected and matched is tracking the scene in the front view. it remembersthe vertical orientation of an object as the reference for visual tracking and generates several rotated images of the reference image. if the vision tracks the

50、reference object using the rotated images, it can measures the body rotation. in order to keep the body balance, the robot feedback controls its body rotation to control the center of the body gravity. the rotational visual trackerl5 can track the image at video rate.5 biped walking if a bipedal rob

51、ot can control the center of gravity freely, it can perform biped walk. as the robot shown in figure 2 has the degrees to left and right directions at the ankle position, it can perform bipedal walking in static way.the motion sequence of one cycle in biped walking consists of eight phases as shown

52、in figure 6. one step consists of four phases; move-gravity-center-on-foot,lift-leg, move-forward-leg, place-leg. as the body is described in solid model, the robot can generate a body configuration for move-gravity-center-on-foot according to the parameter of the hight of the gravity center. after

53、this movement, the robot can lift the other leg and move it forward. in lifting leg, the robot has to control the configuration in order to keep the center of gravity above the supporting foot. as the stability in balance depends on the hight of the gravity center, the robot selects suitable angles

54、of the knees.figure 7 shows a sequence of experiments of the robot in biped walking.6 rolling over and standing upfigure 8 shows the sequence of rolling over, sitting and standing up. this motion requires coordination between arms and legs.as the robot foot consists of a battery, the robot can make

55、use of the weight of the battery for the roll-over motion. when the robot throws up the left leg and moves the left arm back and the right arm forward, it can get rotary moment around the body. if the body starts turning, the right leg moves back and the left foot returns its position to lie on the

56、face. this rollover motion changes the body orientation from face up to face down. it can be verified by the orientation sensor. after getting face down orientation, the robot moves the arms down to sit on two feet. this motion causes slip movement between hands and the ground. if the length of the

57、arm is not enough to carry the center of gravity of the body onto feet, this sitting motion requires dynamic pushing motion by arms. the standing motion is controlled in order to keep the balance.7 integration through building sensor-based transition netin order to integrate the basic actions described above, we adopted a method to describe a sensor-based transition network in which transition is considered according to sensor status. figure 9 shows a state transition diagram of the robot which integrates basic actions: biped walking, rolling over, sitting, and st

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论