完整word版)02-07边界约束的处理_第1页
完整word版)02-07边界约束的处理_第2页
完整word版)02-07边界约束的处理_第3页
完整word版)02-07边界约束的处理_第4页
完整word版)02-07边界约束的处理_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 2-7 边界约束的处理一、边界约束 由于总体刚度矩阵是一个奇异矩阵,在求得总刚矩阵和总体载荷列阵之后,还不能立即求 解整体节点平衡方程组。 从数学上讲,此时的总刚矩阵无逆矩阵,方程组没有确定的解。 从其物理意义来说,是由于整个结构未引入边界约束,为一自由结构,对于一个定 常力系的作用,没有定常的位移。 因此,为进一步解得结构位移,必须引入足够的几何边界约束,以消除结构的刚体 位移。对于同一结构, 在受相同载荷的条件下, 由于不同的边界约束, 求得的结构位移、 应力等 会大不相同。因此,引入正确的边界条件是获得较高精度解的前提。 根据结构的实际情况,离散出现的边界约束大致可分为如下三种:1基础

2、刚性支承 大多数结构要支承在基础上。当基础的刚性很大时,根据不同的支承类型,可以认 为结构和基础相连的节点的一个或几个方向的自由度受到了限制, 即位移分量为零。 如一简支梁,可以认为其支承点处的一个或二个方向的位移分量为零。2对称结构的对称部分支承 当结构和外载荷均对称于某些轴线时,为减少工作量或提高计算精度,可只计算结 构的 1/2 或 1/4 。此时,为保持原有结构特性,要在对称剖分面的节点上施加垂直 于剖分面的刚性约束,以限制该方向的位移。 如轧机机架。3允许产生给定位移的支承 由于结构本身或安装的需要,在支承和结构之间存在给定的间隙,在结构受到实际 约束之前,此节点处允许产生该距离的位

3、移。 如高炉下降管的多余支承。 从数学意义上来讲,上述三种支承 ( 几何约束 ) 可以归纳为零位移约束和给定位 移约束二种,而前者则又是后者的一个特例。二、边界约束的处理根据边界约束的类型及后续处理方法和要求的不同,边界约束处理大致采用如下方法:1. 划行划列法 这种方法适用于预定边界位移为零的约束条件。 具体做法: 在用矩阵表示的线性方程组中, 划去相应于己知为零的节点位移分量的行和列, 以消除刚度位移。 如图 2-13 所示的单元组合体,其边界条件为 u1 u2 u4 v4 v5 v6 0 ,足 以消除结构的刚体位移。 处理时,则是将以上各为零位移分量相应的行与列划掉,这样,原来 12 阶

4、的线性方 程组及其 1212阶的总体刚度矩阵,就变成了6阶的线性方程组及其 66 阶的总体刚度矩阵,即K11对K21K22称K31K32K33K31K32K33K330K52K 53K53K5500K63K63K 65K 66 u6v1v2v4u5R1y0000006而经过约束处理划掉某几行和 这样约束处理是必要的。1) 因为总体刚度矩阵在约束处理前是一个奇异矩阵,几列后变为非奇异矩阵,即约束处理后的总体刚度矩阵的行列式不等于零。2) 另外,如果不进行约束处理, 那么包括在总体节点载荷列矩阵中的约束反力必须事先求出,作为已知节点载荷。 然而,对于形状较复杂一点的单元组合体,在高次超静定情况下,

5、约束反力 很难求出。 经过约束处理后, 在划去总体节点位移列矩阵与总体刚度矩阵中相应于已知 节点位移分量为零行与列的同时, 总体节点载荷列矩阵中未知的约束反力的 行也都被划掉。这样一来,无论次数多高的超静定问题,约束反力都不必事 先求出。 这种约束处理也是可行的。( 1) 因为线性方程组是由各节点平衡方程建立起来的, 而方程组的未知量就是节点位 移分量,那么受约束的节点有一个或两个位移分量已知为零,就不必再去求它, 因此该节点的一个或两个平衡方程就可不要,即可以把它们所在的行划去;(2) 同时, 在其它方程中, 与已知零位移分量和相应的载荷分量, 即相应刚度矩阵元 素和此位移的乘积也为零,所以

6、该列也可划去。 由此可见 ,划行划列的约束处理方法是完全可行的,并不影响计算结果。 划行划列约束处理使总体刚度矩阵发生了两个变化:(1) 总体刚度矩阵的阶数下降。 若单元组合体有 n 个节点和 r 个约束,则总体刚度矩阵在约束处理前为 2n 2n 阶,约束处理后变为 (2n-r)(2n-r) 阶。( 2) 总体刚度矩阵的奇异性发生变化。 约束处理前是奇异矩阵; 约束处理后变为非奇 异性矩阵。 而对总体刚度矩阵的对称性, 稀疏性和带形分布等特性并无影响。 由 于约束处理时在划去某行的同时划去同序号的列, 所以总体刚度矩阵仍保持其对 称性;另外一般单元组合体的 r/2n 比值是很小的,所以约束处理

7、后总体刚度矩 阵仍保持稀疏性和带形分布的特点。 经过约束处理后, 所建立起来的线性方程组的个数与要求解的未知节点位移分量的个数都 是 2n-r 个。 特点: 这种处理方法,由于舍弃了相应于已知位移分量为零的行与列各元素,这样就改变 了各方程及元素的编排序号; 另外,若是求出各节点位移 之后,需计算约束反力,则需重新计算相应行中 各刚度矩阵元素。以上二点是利用此法在编写程序时要注意的。2. 划 0 置 1 法 适用: 这种方法适用于边界节点位移分量为已知(含为 0) 的各种约束。 做法:( 1) 将总刚矩阵 K中相应于已知位移行主对角线元素置1,其他元素改为零;同时将载荷列阵 R中相应元素用已知

8、位移置换。 这样,由该方程求得的此位移值一定等于已知量。(2) 将 K中已知位移相应的列的非主对角成元素也置0,以保持 K的对称性。 当然, 在已知位移分量不为零的情况下, 这样做就改变了方程左端的数值, 为 保证方程成立, 须在方程右端减去已知位移对该方程的贡献已知位移和相 应总刚元素的乘积。 若约束为零位移约束时,此步则可省去。 举例:为具体说明,现举一具有四个方程 (二个节点 ) 的简例。其节点平衡方程为K 11K11K 12K12u1R1xK11K11K12K12v1R1yK 21K 21K 22K 22u2R2xK21K21K22K 22v2R2 y设结构在 1点受到约束 u1= 1

9、, v1= 2 ,则上式中 R1x 、 R1y为未知的约束反力。 利用划 0 置 1 的约束处理方法,上式变为1000u110100v121200K22K22u2R2xK211K21 200K22K22v2R2yK211K21 2 特点:(1) 经以上处理同样可以消除刚性位移 (约束足够的前提下 ) ,去掉未知约束反力。( 2) 但这种方法不改变方程阶数,利于存贮。( 3) 不过,若是要求出约束反力,仍要重新计算各个划去的总刚元素。3. 乘大数法 适用: 这种方法同样适用于边界节点位移分量为已知 ( 含为 0) 的各种约束。 做法:201) 将整体刚度矩阵中与给定节点位移相应的主对角线元素乘上

10、一个大数,如 10 ;2) 再将方程右端载荷列阵中的相应元素用己知位移和该大数及主对角线元素的乘 积来置换。其余各项均保持不变。 举例:如上例用此法进行约束处理后,节点平衡方程组变成20K 11 1020K11K 12K11K11 1020K12K 21K21K 22K21K21K22K12u11K 11 1020K1212v112K11 10202 11K 22u2R2xK 22v2R2 y 特点:1) 使用此一方法,只要大数选得足够大,就可保证求得的位移有足够的精度。2) 由于在处理过程中, 不失去总刚矩阵的任一行 ( 列)及各个元素, 便于进行程序处 理及约束反力计算。 小结:经过约束处

11、理,最终建立了 系数矩阵正定的 2n-r 阶(划行划列法 )或是 2n阶(划零置 1 法 和乘大数法 ) 方程组。三、后续工作 下一步 即求解此方程组,最终获得 2n-r 个未知的位移分量。 线性方程 的解法有直接法和和迭代法两大类: 直接法的优点是计算量比较小,所需机时短,其中常用的为消元法和矩阵分解法; 迭代法具有算法简单,易编制程序,可节省内存等优点,适用于求解大题目,但计 算时间较长,这种方法要求方程组的系数矩阵在主对角线上占优势。四、总结前面各节, 我们对平面问题的三节点三角单元有限单元的位移法, 进行了比较详细的讨论 与分析,下面就将其概括归纳几点如下:(1) 基本原理。是把连续弹

12、性体离散为有限个节点连接起来的单元组合体, 代替原来的弹性体, 然后通过 弹性力学基本方程与虚功原理建立并求解以节点位移 为未知量的、以总体刚度矩阵 K为系数的线性方程组。(2) 解答特点是近似数值解。误差主要反映在连续弹性体的离散化 ( 包括单元位移函数的选取 ) 上,但当单元尺寸逐步取 小时,有限单元法解答将收敛于正确解答。(3) 解题步骤。根据有限单元法基本原理和实际操作,概括地分为两大步骤: 一是连续弹性体的离散化,其中包括单元划分,节点单元的编号,节点坐标位 置,载荷移置和约束处理 (边界条件 ) 等,这些工作都需算题人员在上计算机算 题之前完成,所以也可称为上机前的准备工作; 二是根据基本原理建立与求解线性方程组 K = R。将求得的 2n-r 个节 点位移分量,再代入 (2-18) 式,即可求得各单元的应力分量。 经过两次递代九步循环解出节点位移及单元应力等, 这些工作是按己编制好 的程序由计算机来完成,也可称为上机计算。现将有限单元法解题步骤归纳 起来用框图表示如下。平面问题的有限单元法, 还会遇到一些其他问题, 如温度应力等等, 其处理方法, 将在以 后章节中陆续介绍。单元位移模式u(x,y) 1 2x 3yv(x,y) 4 5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论