《圆》知识点归纳及相关题型整理_第1页
《圆》知识点归纳及相关题型整理_第2页
《圆》知识点归纳及相关题型整理_第3页
《圆》知识点归纳及相关题型整理_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第五章中心对称图形(二)知识点归纳以及相关题目总结一、和圆有关的基本概念1圆:把线段0P的一个端点0固定,使线段 0P绕着点0在平面内旋转1周,另一个端点 P运 动所形成的图形叫做 圆。其中,定点 0叫做圆心,线段0P叫做半径。以点0为圆心的圆,记作 “O O”读作“圆0”圆是到定点的距离等于定长的点的集合。2圆的内部可以看作是到圆心的距离 小于半径 的点的集合。3圆的外部可以看作是到圆心的距离 大于半径 的点的集合。4弦:连接圆上任意两点的线段。5直径:经过圆心的弦。6弧:圆上任意两点间的部分。优弧:大于半圆的弧。劣弧:小于半圆的弧。半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫

2、做半圆。7同心圆:圆心相同,半径不相等的两个圆叫做同心圆。8等圆:能够重合的两个圆叫做等圆。(圆心不同)9等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。(在大小不等的两个圆中,不存在等弧。10. 圆心角:顶点在圆心的角。11. 圆周角:顶点在圆上,两边与圆相交的角。12. 圆的切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长。13. 正多边形: 定义:各边相等、各角也相等的多边形 对称性:都是轴对称图形;有偶数条边的正多边形既是轴对称图形有是中心对称图形。14圆锥: :母线:连接圆锥的顶点和底面圆上任意一点的线段。 :高:连接顶点与底面圆的圆心的线段。15. 三角形的外接圆:三角

3、形三个顶点确定一个圆,外接圆的圆心叫做三角形的外心,这个 三角形叫做这个圆的内接三角形。16. 三角形的内切圆:与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三 角形叫做圆的外切三角形。二、和圆有关的重要定理1. 圆是中心对称图形,圆心是它的对称中心。2. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。3. 在同圆或等圆中,如果两个圆心角、两条弦、两条弧中有一组量相等,那么它们所对应的 其余各组量都分别相等。推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。4. 圆心角的度数与它所对的弧的度数相等。5

4、. 圆是轴对称图形, 过圆心的任意一条直线都是它的对称轴。6垂径定理:垂直于弦的直 径平分这条弦,并且平 分弦所对的弧。直线过圆心(直径、直线(直径)平分弦直线过圆(直径)= 直线平分弦所对优弧直线垂直于弦J直线平分弦所对劣弧垂径定理的实质可以理解为: 一条直线,如果它具有两个性质: (1)经过圆心;(2)垂直于弦, 那么这条直线就一定具有另外三个性质:(3 )平分弦,(4)平分弦所对的劣弧,(5)平分弦所对的优弧。推论:圆的两条平行弦所夹的弧相等。7同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。8直径(或半圆)所对的圆周角是直角,90的圆周角所对的弦是直径。9如果三角形一边上的中

5、线等于这边的一半,那么这个三角形是直角三角形。10确定圆的条件不在同一条直线上的三个点确定一个圆经过三角形三个顶点可以画一个圆,并且只能画一个.这个三角形叫做这个圆的内接三角形。 经过三角形三个顶点的圆叫做三角形的外接圆三角形外接圆的圆心叫做这个三角形的外 心。三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。11.三角形的外接圆的圆心是三边的垂直平分线的交点12圆的切线垂直于经过切点的半径。13经过半径的外端并且垂直于这条半径的是直线是圆的切线。14. 从圆外一点引圆的两条切线,他们的切线长相等,这点和圆心的连线平分两条切线的夹 角。三、和圆有关的位置关系1点和圆

6、:如果O O的半径为r,点P到圆心O的距离为d,那么点P在圆内点P在圆上点P在圆外2直线和圆:dr 直线与圆有两个公共点时,叫做直线与圆相交。 直线与圆有唯一公共点时,叫做直线与圆相切。这条直线叫做 圆的切线,这个公共点叫做切点。 直线与圆没有公共点时,叫做直线与圆相离。如果O O的半径为r,圆心O到直线I的距离为d,那么直线I与O O相交直线I与O O相切直线I与O O相离3圆和圆:dr两个圆外离。两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这 两个圆有唯一的公共点,并且除了这个公共点以外, 每个圆上的点都在另一个圆的外部时,叫做这两个圆外切,这个唯一的公共点叫做 切点。 两

7、个圆有两个公共点 时,叫做这 两个圆相交。 两个圆有唯一的公共点,并且除了这个公共点以外, 一个圆上的点都在另一个圆的内部时, 叫做这两个圆内切,这个唯一的公共点叫做切点。(两个圆外切和内切统称为 两个圆相切。) 两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这 两个圆内含。 (两圆同心 是两圆内含的一种特例。)两圆外离 两圆外切 两圆相交 两圆内切 两圆内含如果两圆的半径分别为 R、r,圆心距为d,那么dR+rd=R+rI 0 J丫) R-rd r)d=R-r(Rr)l0 dr)四、和圆有关的计算1. 多边形和圆厲-2)订80。每个内角的度数:360。每个外角的度数:(等于中心

8、角)正多边形和圆的关系定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆,因此可以采用 作辅助圆的办法,解决一些问题。对于一些特殊的正 n边形,如正四边形、正八边形、正六边形、正三角形、正十二边形还 可以用尺规作图。2. 扇形:_ 21面积公式:s = n或36023. 弧长:弧长公式:nn二rI =2兀r =3601804. 圆锥:(圆锥的侧面展开图,是一个扇形。)圆锥的侧面积=S侧=乂 2 n rX a= n ra(圆锥的侧面积与底面积的和称为圆锥的全面积。)五、和圆有关的作图1圆心做一个已知圆的圆心在圆上任意画一条线,作垂直与这条线的直径;再画一条弦,继续作垂直于这条弦的直径

9、; 两条直径的交点就是圆心。2三角形的外接圆: 已知锐角三角形 ABC,用直尺和圆规 作厶ABC的外接圆。 分别作边AB、AC的垂直平分线 DE、FG, DE与FC相交于点0 以0为圆心,0A为半径作圆,O 0就是所求作的圆。3用直尺和圆规 做特殊的正多边形:(1) 正四边形 在O 0中作两条互相垂直的直径 AC、BD 依次连接A、B、C、D各点,四边形 ABCD就是所求做的正四边形。(2) 正六边形 在O 0中任意做一条直径 AD 分别以A、D为圆心,O 0的半径作半径作弧,与O 0相交于B、F和C、E 依次连接A、B、C、D、E、F各点,六边形 ABCDEF就是所求作的正六边形。六、和圆有关的常作辅助线1.见弦作弦心距有关弦的问题,常作其弦心距(有时还需作出相应的半径),通过垂径定理来沟通结论与题设间的关系。2见直径作圆周角在题目中若已知圆的直径,一般是做直径所对的圆周角,利用“直径所对的圆周角是直角” 这一特征来证明问题。3见切线作半径命题的条件中含有圆的切线,往往是连接过切点的半径,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论