次序统计量及其分布_第1页
次序统计量及其分布_第2页
次序统计量及其分布_第3页
次序统计量及其分布_第4页
次序统计量及其分布_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、次序统计量及其分布,5.3 次序统计量及其分布,定义,定义 5-3-1: 设,为取自总体X的样本,,将其按大小顺序排序,则称 X(k) 为第 k 个次序统计量( No.k Order Statistic),特别地,称,(5-3-1),为最小顺序统计量(Minimum order Statistic),称,(5-3-2),为最大顺序统计量(Maximum order Statistic) 。,次序统计量及其分布,例5-3-1:设总体X的分布为仅取 0, 1, 2 的离散均匀分布,其分布列为,现从中抽取容量为 3 的样本,其一切可能取值有,种,现将它们以及由它们所构成的次序统,计量 的一切可能值列

2、在表中(P243),,次序统计量及其分布,可见这三个次序统计量的分布是不相同的。,进一步,我们可以给出两个次序统计量的联合分布,如 x(1) 和 x(2) 的联合分布列为,易于看出,不等于,即 x(1) 和 x(2) 是不独立的。,次序统计量及其分布,次序统计量的分布,(一)单个次序统计量的分布,定理 5-3-1:设总体X的密度函数为 p (x) ,分布函数为 F (x) ,x1, x2, , xn 为样本,则第 k 个次序统计量 x (k) 的密度函数为,(5-3-3),证明: 对任意的实数 x ,考虑次序统计量 x(k) 取值落在小区间 (x , x + x 内这一事件,它等价于“样本容量

3、为 n 的样本中有 1 个观测值落在区间 (x , x + x 之间,而有 k-1 个观测值小于等于 x ,有 n-k 个观测值大于 x + x ”,其直观示意图见下图 5-8 .,次序统计量及其分布,图 58 x (k) 的取值示意图,样本的每一分量小于等于 x 的概率为 F (x) , 落入区间 ( x , x + x 概率为F(x+ x)-F(x),落入区间 (x+ x, b的概率为 1-F(x+x) ,而将 n 个分量分成这样的三组,总的分法有,种,于是,若以 Fk (x) 记 x (k) 的分布函数,则由多项分布可得,次序统计量及其分布,两边同除以 x , 并令 x0 , 即有,推论

4、1 :最大次序统计量 x (n) 的概率密度函数为,推论2 :最小次序统计量 x (1) 的概率密度函数为,(5-3-4),(5-3-5),次序统计量及其分布,例 5-3-2 :设总体X 的密度函数为,现从该总体中抽得一个容量为 5 的样本,试计算,解: 我们首先应求出 x (2) 的分布。由总体密度函数不难求出总体分布函数为,由公式(5-3-3)可以得到 x (2) 的密度函数为,次序统计量及其分布,于是,次序统计量及其分布,(二)多个次序统计量的联合分布,仅讨论任意二个次序统计量的情形。,定理 5-3-2 :设总体 有密度函数 f (x) , a x b , (同样可设 a = - , b

5、 = + ) 。并且 1 , 2 , , n 是取自这一总体的一个样本,则其任意两个次序统计量 (1) (2) 的联合分布密度函数为,(5-3-6),证明:对增量 y, z 以及 y z , 事件,次序统计量及其分布,可以表述为“容量为 n 的样本 x1, x2, , xn 中有 i-1 个观测值小于等于 y , 一个落入区间 ( y , y + y , j i -1 个落入区间 ( y + y , z , 一个落入区间 ( z, z+z ,而余下的 nj 个大于 z + z ”,i-1 1 j-i-1 1 n-j,于是由多项分布得,i-1 1 j-i-1 1 n-j,i-1 1 j-i-1

6、1 n-j,i-1 1 j-i-1 1 n-j,次序统计量及其分布,考虑到 F (x) 的连续性,当,有,于是,次序统计量及其分布,例5-3-4:设总体分布为 U ( 0 , 1 ) , x1, x2, , xn 为样本,则 ( x (1) , x (n) )的联合密度函数为,令,由 R 0 可以推出,则,该分布参数为 ( n-1, 2 ) 的贝塔分布。,次序统计量及其分布,总体分位数与样本分位数,(一)总体分位数,定义5-3-2: 设总体 X 的分布函数为 F (x) ,满足,(5-3-7),的 x称为 X 的 分位数,如下图所示。,次序统计量及其分布,都在书后附表中可以查到。其中 N (

7、0, 1 )是分布函数表 ( x ) 反过来查,而其它几个分布,则是分别对给出 的几个的常用值如 =0, 0.25, 0.05, 0.1, 0.9, 0.95, 0.975 等等,列出相应分布对应值的 分位点。图 5-9 给出了四种常用分布的 分位点表示方法,其中 N ( 0, 1 ) 的 分位点通常记成 u .,图 5-9,次序统计量及其分布,这里要注意到如下几个有用的事实。,N ( 0, 1 )的分位数 .,此时,,故,从而,2) 对于 T t (n) ,由密度函数的对称性可知,即,(5-3-8),(5-3-9),次序统计量及其分布,3)对于 F分布,由于,所以,即,(5-3-10),次序

8、统计量及其分布,(二)样本分位数,定义5-3-3:设,为取自总体 X 的次序统计量,称 mp,为样本 p 分位数。(Sample p Quantile ),特别地,当 p = 时,称 mp 为样本中位数。,(5-3-11),(5-3-12),次序统计量及其分布,对多数总体而言,要给出样本 p 分位数的精确分布通常不是一件容易的事,但当 n+ 时,样本 p 分位数的渐近分布有比较简单的表达式,我们这里不加证明地给出如下定理。,定理 5-3-4:设总体密度函数为 f (x) , xp 为其 p 分位数, f (x) 在 xp 处连续且 f (x) 0 , 则当 n+ 时,样本 p 分位数 mp 的

9、渐近分布为,特别地,对样本中位数有,(5-3-13),次序统计量及其分布,例5-3-2: 设总体 X 为柯西分布,其密度函数为,其分布函数为,易知,是该总体的中位数,即 x = .,当样本容量 n 较大时,样本中位数 m 0.5 的渐近分布为,次序统计量及其分布,五数概括与箱线图,次序统计量的应用之一就是五数概括与箱线图。在得到有序样本后,容易计算如下五个值: 最小观测值 x min = x (1) ; 最大观测值 x max = x (n); 中位数 m 0.5 ; 第一 4 分位数 Q 1 = m 0.25 第三 4 分位数 Q3 = m 0.75 。 所谓五数概括就是指用这五个数来大致描

10、述一批数据的轮廓。,次序统计量及其分布,例 5-3-4 :表 55 是某厂 160 名销售人员某月的销售量数据的有序样本,由该批数据可计算得到:,五数概括的图形表示称为箱线图,由箱子和线段组成。图5-11 是该例中样本数据的箱线图,其作法如下,下面就通过一个具体的实例说明之。,次序统计量及其分布,表 511 某厂 160 名销售员的月销售量的有序样本,次序统计量及其分布,(1)画一个箱子,其两侧恰为第一 4 分位数和第三 4 分位数,在中位数位置上画一条竖线,它在箱子内,这个箱子包含了样本中 50% 的数据;,图 5-11 月销售量数据的箱线图,(2)在箱子左右两侧各引出一条水平线,分别至最小值和最大值为止,每条线段包含了样本中 25% 的数据。,箱线图可用来对数据分布的形状进行大致的判断。图 5-12 给出三种常见的箱线图,分别对应对称分布、左偏分布和右偏分布。,次序统计量及其分布,左偏

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论