版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【证法1】(课本的证明)abbaacbacaaabccbbbbcca11a2+b2=c2.2aabb做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b,所以面积相等.即a2+b2+4ab=c2+4ab整理得22【证法2】(邹元治证明)1ab以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状,使a、e、b三点在一条直线上,b、f、c三点在一条直线上,c、g、d三点在一条直线上.rthaertebf,a
2、he=bef.dbgacaeh+ahe=90,aeh+bef=90.hef=18090=90.四边形efgh是一个边长为c的ahccb正方形.它的面积等于c2.frtgdhrthae,hgd=eha.bccaahgd+ghd=90,eha+ghd=90.aebb(a+b)2又ghe=90,dha=90+90=180.abcd是一个边长为a+b的正方形,它的面积等于.2=4(a+b)21ab+c2【证法3】(赵爽证明).a2+b2=c2.d以a、b为直角边(ba),以c为斜边作四个全等的直角三角形,则每个直角1ab三角形的面积等于2.把这四个直角三角形拼成如图所示形状.rtdahrtabe,hd
3、a=eab.had+had=90,eab+had=90,abcd是一个边长为c的正方形,它的面积等于c2.ef=fg=gh=he=ba,hef=90.caabgfhebc1-1-efgh是一个边长为ba的正方形,它的面积等于(b-a)2.4ab+(b-a)2=c2221.a2+b2=c2.【证法4】(1876年美国总统garfield证明)1ab以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使a、e、b三点在一条直线上.rteadrtcbe,ade=bec.caed+ade=90,aed+bec=90.ddec=18090=
4、90.dec是一个等腰直角三角形,accb1它的面积等于2c2.abeab又dae=90,ebc=90,adbc.1(a+b)2abcd是一个直角梯形,它的面积等于2.1(a+b)2=21ab+1c2222.a2+b2=c2.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使d、e、f在一条直线上.过c作ac的延长线交df于点p.d、e、f在一条直线上,且rtgefrtebd,abc=ebd.cch即cbd=90.abcaegf=bed,fegf+gef=90,bed+gef=90,babeg=18090=90.ab
5、eg是一个边长为c的正方形.abc+cbe=90.rtabcrtebd,bcebd+cbe=90.a又bde=90,bcp=90,bc=bd=a.b又ab=be=eg=ga=c,gcepbadbdpc是一个边长为a的正方形.同理,hpfg是一个边长为b的正方形.设多边形ghcbe的面积为s,则1a2+b2=s+2ab,21c2=s+2ab2,a2+b2=c2.2-2-【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(ba),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使e、a、c三点在一条直线上.过点q作qpbc,交ac于点p.过点b作bm
6、pq,垂足为m;再过点ef作fnpq,垂足为n.bca=90,qpbc,bampc=90,bmpq,bmp=90,bcpm是一个矩形,即mbc=90.fcapbccqbqbm+mba=qba=90,mabc+mba=mbc=90,cqbm=abc,n又bmp=90,bca=90,bq=ba=c,artbmqrtbca.c同理可证rtqnfrtaef.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使h、c、b三点在一条直线上,连结bf、cd.过c作clde,交ab于点m,交de于点gl.af=ac,ab=ad,hf
7、ab=gad,kacfabgad,1a2fab的面积等于2,gad的面积等于矩形adlm的面积的一半,faambbb矩形adlm的面积=a2.同理可证,矩形mleb的面积=b2.正方形adeb的面积=矩形adlm的面积+矩形mleb的面积c2=a2+b2,即a2+b2=c2.【证法8】(利用相似三角形性质证明)cdlcec如图,在rtabc中,设直角边ac、bc的长度分别为a、b,斜边ab的长为c,过点c作cdab,垂足是d.在adc和acb中,adc=acb=90,cad=bac,adcacb.adac=acab,ab即ac2=adab.ad同理可证,cdbacb,从而有bc2=bdab.a
8、c2+bc2=(ad+db)ab=ab2,即a2+b2=c2.cb【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(ba),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.过a作afac,af交gt于f,af交dt于r.过b作bpaf,垂足为p.过d作de与cb的延长线垂直,垂足为e,de交af于h.bad=90,pac=90,3gad-3-cb9c21dah=bac.又dha=90,bca=90,ad=ab=c,rtdhartbca.dh=bc=a,ah=ac=b.由作法可知,pbca是一个矩形,所以rtapbrtbca.即pb=ca=b,a
9、p=a,从而ph=ba.rtdgtrtbca,rtdhartbca.rtdgtrtdha.dh=dg=a,gdt=hda.又dgt=90,dhf=90,gdh=gdt+tdh=hda+tdh=90,dgfh是一个边长为a的正方形.gf=fh=a.tfaf,tf=gtgf=ba.tfpb是一个直角梯形,上底tf=ba,下底bp=b,高fp=a+(ba).用数字表示面积的编号(如图),则以c为边长的正方形的面积为c2=s+s+s+s+s1234522=s+s+s=1b+(b-a)a+(b-a)b2-1ab834s=s+s9,58,s+s=b2-3412ab-s8=b2-s-s18.把代入,得c2=
10、s+s+b2-s-s+s+s121889=b2+s+s29=b2+a2.bbtr2c8d6rthbtrtabe.a13h7mca2+b2=c2.【证法10】(李锐证明)设直角三角形两直角边的长分别为a、b(ba),斜边的长为c.做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使a、e、g三点在一条直线上.用数字表示面积的编号(如图).tbe=abh=90,tbh=abe.又bth=bea=90,bt=be=b,ht=ae=a.gh=gtht=ba.又ghf+bht=90,gfea4dbc+bht=tbh+bht=90,5ghf=dbc.db=ebed=ba,hgf=bdc=90,q
11、s=srthgfrtbdc.即72.过q作qmag,垂足是m.由baq=bea=90,可知abe=qam,而ab=aq=c,所以rtabertqam.又rthbts=srtabe.所以rthbtrtqam.即85.由rtabertqam,又得qm=ae=a,aqm=bae.4-4-aqm+fqm=90,bae+car=90,aqm=bae,fqm=car.又qmf=arc=90,qm=ar=a,rtqmfrtarc.即s4=s6.c2=s+s+s+s+sa2=s+sb2=s+s+s12345,16,378,又s7=s2,s8=s5,s4=s6,a2+b2=s+s+s+s+s16378=s+s+
12、s+s+s14325=c2,即a2+b2=c2.【证法11】(利用切割线定理证明)在rtabc中,设直角边bc=a,ac=b,斜边ab=c.如图,以b为圆心a为半径作圆,交ab及ab的延长线分别于d、e,则bd=be=bc=a.因为bca=90,点c在b上,所以ac是b的切线.由切割线定理,得=c-a,ac2=aead=(ab+be)(ab-bd)c=(c+a)(-a)22acb即b2=c2-a2,a2+b2=c2.eabacda【证法12】(利用多列米定理证明)在rtabc中,设直角边bc=a,ac=b,斜边ab=c(如图).过点a作adcb,过点b作bdca,则acbd为矩形,矩形acbd
13、内接于一个圆.根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有abdc=adbc+acbd,ab=dc=c,ad=bc=a,ac=bd=b,dbba+b=c.ab2=bc2+ac2,即c2=a2+b2,222【证法13】(作直角三角形的内切圆证明)acabcac在rtabc中,设直角边bc=a,ac=b,斜边ab=c.作rtabc的内切圆o,切点分别为d、e、f(如图),设o的半径为r.ae=af,bf=bd,cd=ce,ac+bc-ab=(ae+ce)+(bd+cd)-(af+bf)=ce+cd=r+r=2r,a(a+b)2=(2r+c)2(r,2+rc)+c2a2+b2+2a
14、b=4or即a+b-c=2r,a+b=2r+c.即,cbfrrebadcs2dabc=1ab,5-5-2ab=4sdabc,又sdabc=sdaob+sdboc+sdaoccr+1ar+1br11(a+b+c)r=222=2()4r2+rc=4s()4r+rc=2ab1(2r+c+c)r=2=r2+rc,dabc,ab2=abab=abad+bd=abad+abbda2+b2+2ab=2ab+c2,a2+b2=c2.【证法14】(利用反证法证明)如图,在rtabc中,设直角边ac、bc的长度分别为a、b,斜边ab的长为c,过点c作cdab,垂足是d.假设a2+b2c2,即假设ac2+bc2ab
15、2,则由()可知ac2abad,或者bc2abbd.即ad:acac:ab,或者bd:bcbc:ab.在adc和acb中,a=a,c若ad:acac:ab,则adcacb.在cdb和acb中,ab=b,b若bd:bcbc:ab,则acdbacb.dcbadadaaba2cb又acb=90,adc90,cdb90.这与作法cdab矛盾.所以,ac2+bc2ab2的假设不能成立.a2+b2=c2.【证法15】(辛卜松证明)baba11ababaa22cc2cb11abb2abbcabab22acbbabbc设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形abcd.把正方形
16、abcd划分成上方左图所示的几个部分,则正方形abcd的面积为(a+b)2=a2+b2+2ab;把正方形abcd划分成上方右图所示的几个部分,则正方形abcd的面积为=4(a+b)21ab+c22=2ab+c2.a2+b2+2ab=2ab+c2,a2+b2=c2.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a、b(ba),斜边的长为c.做两个边长分别为a、b的正方形(ba),把它们6-6-ead=mdc,dc=ad=c.gacade+adc+mdc=180,bc2ade+mdc=ade+ead=90,1ac拼成如图所示形状,使e、h、m三点在一条直线上.用数字表示面积的编号(如图).
17、在eh=b上截取ed=a,连结da、dc,则ad=c.bem=eh+hm=b+a,ed=a,dm=emed=(b+a)a=b.c又cmd=90,cm=a,54caed=90,ae=b,abfrtaedrtdmc.3aadc=90.7作abdc,cbda,则abcd是一个边长为c的正方形.ebd6hambaf+fad=dae+fad=90,baf=dae.连结fb,在abf和ade中,ab=ad=c,ae=af=b,baf=dae,abfade.afb=aed=90,bf=de=a.点b、f、g、h在一条直线上.在rtabf和rtbcg中,ab=bc=c,bf=cg=a,rtabfrtbcg.c
18、2=s2+s3+s4+s5,b2=s1+s2+s6,a2=s3+s7,s=s=s=s+s15467,=s+s+s+(s+sa2+b2=s3+s7+s1+s2+s6)23167=s2+s3+s4+s=c2a2+b2=c2.57-7-勾股定理在实际生活中的应用勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三边之间的数量关系,是我们在直角三角形中解决边长计算问题的重要理论依据,同时勾股定理在我们实际生活中应用也很广泛。例:在圆柱体中底面半径是6,高为8,若一只小虫从a点出发,沿着圆柱体的侧面爬行到c点求小虫爬行最短路程?思路解析:小虫从a点出发,沿着圆柱体的侧面爬行到c点,要在侧面上比较路线的长短十分困难,而在平面上找两点间的最短路程是最容易。因而我们假象把这个圆柱体沿bc剪开推开(如图2),此时,ac等之间的最短路线即为线段ac的长度。解:在abc中,bc8,ab等于圆柱体底面周长的一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《化工设计基础》2023-2024学年第一学期期末试卷
- 沈阳理工大学《电路》2022-2023学年期末试卷
- 沈阳理工大学《产品调研方法》2022-2023学年第一学期期末试卷
- 归还租赁押金合同范本
- 贵州总承包合同条款
- 合肥研究院研究生公寓租住协议书
- 辅警体测标准
- 2024空气净化器设备租赁合同模板
- 2024服装加盟合同范本
- 沈阳理工大学《EDA技术与VHD语言》2022-2023学年期末试卷
- 2024-2030年中国肉牛养殖产业前景预测及投资效益分析报告权威版
- 河北省石家庄市长安区2023-2024学年五年级上学期期中英语试卷
- 品牌经理招聘笔试题及解答(某大型国企)2025年
- 多能互补规划
- 珍爱生命主题班会
- 《网络数据安全管理条例》课件
- 消除“艾梅乙”医疗歧视-从我做起
- 第7课《回忆我的母亲》课件-2024-2025学年统编版语文八年级上册
- 天一大联考●皖豫名校联盟2024-2025学年高三上学期10月月考试卷语文答案
- 八年级历史上册(部编版)第六单元中华民族的抗日战争(大单元教学设计)
- 全国农业技术推广服务中心公开招聘应届毕业生补充(北京)高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论