四面体外接球的球心、半径求法_第1页
四面体外接球的球心、半径求法_第2页
四面体外接球的球心、半径求法_第3页
四面体外接球的球心、半径求法_第4页
四面体外接球的球心、半径求法_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、四面体外接球的球心、半径求法1、 出现“墙角”结构利用补形知识,联系长方体。【原理】:长方体中从一个顶点出发的三条棱长分别为,则体对角线长为,几何体的外接球直径为体对角线长 即【例题】:在四面体中,共顶点的三条棱两两垂直,其长度分别为,若该四面体的四个顶点在一个球面上,求这个球的表面积。解:因为:长方体外接球的直径为长方体的体对角线长所以:四面体外接球的直径为的长即: 所以球的表面积为2、 出现两个垂直关系,利用直角三角形结论。【原理】:直角三角形斜边中线等于斜边一半。球心为直角三角形斜边中点。【例题】:已知三棱锥的四个顶点都在球的球面上,且,,求球的体积。解:且,, 因为 所以知所以 所以可

2、得图形为:在中斜边为在中斜边为取斜边的中点,在中在中所以在几何体中,即为该四面体的外接球的球心 所以该外接球的体积为【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。3、 出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥中,求该棱锥的外接球半径。解:由已知建立空间直角坐标系 由平面知识得 设球心坐标为 则,由空间两点间距离公式知 解得 所以半径为【结论】:空间两点间距离公式:4、 四面体是正四面体 图1处理球的“内切”“外接”问题 与球有关的组合体问题,一种是内切,一种是外接。作为这种特殊的位置关系在高考中也是考查的重点,但同学们又因缺乏较强的空间想象能力而感

3、到模糊。解决这类题目时要认真分析图形,明确切点和接点的位置及球心的位置,画好截面图是关键,可使这类问题迎刃而解。 一、棱锥的内切、外接球问题例1.正四面体的外接球和内切球的半径是多少? 分析:运用正四面体的二心合一性质,作出截面图,通过点、线、面关系解之。解:如图1所示,设点是内切球的球心,正四面体棱长为由图形的对称性知,点也是外接球的球心设内切球半径为,外接球半径为正四面体的表面积正四面体的体积, 在中,即,得,得【点评】由于正四面体本身的对称性可知,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为 ( 为正四面体的高),且外接球的半径,从而可以通过截面图中建立棱长

4、与半径之间的关系。例2设棱锥的底面是正方形,且,如果的面积为1,试求能够放入这个棱锥的最大球的半径.图2解:平面,由此,面面.记是的中点,从而.平面,设球是与平面、平面、平面都相切的球.如图2,得截面图及内切圆不妨设平面,于是是的内心.设球的半径为,则,设,.,当且仅当,即时,等号成立.当时,满足条件的球最大半径为. 练习:一个正四面体内切球的表面积为,求正四面体的棱长。(答案为:)【点评】根据棱锥的对称性确定内切球与各面的切点位置,作出截面图是解题的关键。图3图4图5二、球与棱柱的组合体问题1 正方体的内切球:球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。设正方体的棱

5、长为,球半径为。如图3,截面图为正方形的内切圆,得;2 与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆为正方形的外接圆,易得。3 正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面作截面图得,圆为矩形的外接圆,易得。例3.在球面上有四个点、.如果、两两互相垂直,且,那么这个球的表面积是_.解:由已知可得、实际上就是球内接正方体中交于一点的三条棱,正方体的对角线长就是球的直径,连结过点的一条对角线,则过球心,对角线 练习:一棱长为的框架型正方体,内放一能充气吹胀的气球,求当球与正方体棱适好接触但又不至于变形时的球的体积。(答案为)4构造直三角形,巧解正

6、棱柱与球的组合问题正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。例4.已知三棱柱的六个顶点在球上,又知球与此正三棱柱的5个面都相切,求球与球的体积之比与表面积之比。分析:先画出过球心的截面图,再来探求半径之间的关系。图6解:如图6,由题意得两球心、是重合的,过正三棱柱的一条侧棱和它们的球心作截面,设正三棱柱底面边长为,则,正三棱柱的高为,由中,得, ,练习:正四棱柱的各顶点都在半径为的球面上,求正四棱柱的侧面积的最大值。(答案为:)【点评】“内切”和“外接”等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关

7、系,然后把相关的元素放到这些关系中解决问题,作出合适的截面图来确定有关元素间的数量关系,是解决这类问题的最佳途径。勾股定理知,假设正四面体的边长为时,它的外接球半径为。平面向量重点知识回顾1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:用有向线段表示;用字母、等表示;平面向量的坐标表示:分别取与轴、轴方向相同的两个单位向量、作为基底。任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,叫做向量的(直角)坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标, 特别地,。;若,则,3.零向量、单位向量:长度为0的向量叫零向量,记为; 长度为1个单位长

8、度的向量,叫单位向量.(注:就是单位向量)4.平行向量:方向相同或相反的非零向量叫平行向量;我们规定与任一向量平行.向量、平行,记作.共线向量与平行向量关系:平行向量就是共线向量.5.相等向量:长度相等且方向相同的向量叫相等向量.6向量的基本运算(1) 向量的加减运算几何运算:向量的加减法按平行四边行法则或三角形法则进行。坐标运算:设a =(x1,y1), b =(x2,y2)则a+b=(x1+x2,y1+y2 ) a-b=(x1-x2,y1-y2) (2) 平面向量的数量积 : ab=cos设a =(x1,y1), b =(x2,y2)则ab=x1x2+y1y2(3)两个向量平行的充要条件

9、= 若 =(x1,y1), =(x2,y2),则 x1y2-x2y1=0(4)两个非零向量垂直的充要条件是 =0设 =(x1,y1), =(x2,y2),则 x1x2+y1y2=0.向量的加法、减法:求两个向量和的运算,叫做向量的加法。向量加法的三角形法则和平行四边形法则。向量的减法向量加上的相反向量,叫做与的差。即: -= + (-);差向量的意义: = , =, 则=- 平面向量的坐标运算:若,则,。向量加法的交换律:+=+;向量加法的结合律:(+) +=+ (+)7实数与向量的积:实数与向量的积是一个向量,记作:(1)|=|;(2)0时与方向相同;cos2x,则x的取值范围是( )A.x

10、|2kx2k+,kZ B.x|2k+x2k+,kZC.x|kxk+,kZ D.x|k+xk+,kZ18.答案:D解析一:由已知可得cos2x=cos2xsin2x0,所以2k+2x2k+,kZ.解得k+xk+,kZ(注:此题也可用降幂公式转化为cos2xcos2x得sin2x1sin2x,sin2x.因此有sinx或sinx.由正弦函数的图象(或单位圆)得2k+x2k+或2k+x2k+(kZ),2k+x2k+可写作(2k+1)+x(2k+1)+,2k为偶数,2k+1为奇数,不等式的解可以写作n+xcotB.tancos D.sincos23.答案:A图413解法一:因为为第二象限角,则2k2k

11、(kZ),即为第一象限角或第三象限角,从单位圆看是靠近轴的部分如图413,所以tancot.解法二:由已知得:2k2k,kk,k为奇数时,2n2n(nZ);k为偶数时,2n2n(nZ),都有tancot,选A.评述:本题主要考查象限角的概念和三角函数概念,高于课本.24.(2002上海春,9)若f(x)=2sinx(01在区间0,上的最大值是,则 .24.答案: 解析:01 T2 f(x)在0,区间上为单调递增函数f(x)maxf()即2sin 又01 解得25.(2002北京文,13)sin,cos,tan从小到大的顺序是 .25.答案:cossintan 解析:cos0,tantan 0x

12、时,tanxxsinx0 tansin0 tansincos26.(1997全国,18)的值为_.26.答案:2解析:.评述:本题重点考查两角差的三角公式、积化和差公式、半角公式等多个知识点.27.(1996全国,18)tan20+tan40+tan20tan40的值是_.27.答案: 解析:tan60=,tan20+tan40=tan20tan40,tan20+tan40+tan20tan40=.28.(1995全国理,18)函数ysin(x)cosx的最小值是 .28.答案: 解析:ysin(x)cosxsin(2x)sinsin(2x)当sin(2x)1时,函数有最小值,y最小(1).评

13、述:本题考查了积化和差公式和正弦函数有界性(或值域).29.(1995上海,17)函数ysincos在(2,2)内的递增区间是 .29.答案: 解析:ysincossin(),当2k2k(kZ)时,函数递增,此时4kx4k(kZ),只有k0时,(2,2).30.(1994全国,18)已知sincos,(0,),则cot的值是 .30.答案:解法一:设法求出sin和cos,cot便可求了,为此先求出sincos的值.图414将已知等式两边平方得12sincos变形得12sincos2,即(sincos)2又sincos,(0,)则,如图414所以sincos,于是sin,cos,cot.解法二:

14、将已知等式平方变形得sincos,又(0,),有cos0sin,且cos、sin是二次方程x2x0的两个根,故有cos,sin,得cot.评述:本题通过考查三角函数的求值考查思维能力和运算能力,方法较灵活.31.(2000全国理,17)已知函数ycos2xsinxcosx1,xR.(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图象可由ysinx(xR)的图象经过怎样的平移和伸缩变换得到?31.解:(1)ycos2xsinxcosx1(2cos2x1)(2sinxcosx)1cos2xsin2x(cos2xsinsin2xcos)sin(2x)y取得最大值必须且只需2x2k,kZ,

15、即xk,kZ.所以当函数y取得最大值时,自变量x的集合为x|xk,kZ.(2)将函数ysinx依次进行如下变换:把函数ysinx的图象向左平移,得到函数ysin(x)的图象;把得到的图象上各点横坐标缩短到原来的倍(纵坐标不变),得到函数ysin(2x)的图象;把得到的图象上各点纵坐标缩短到原来的倍(横坐标不变),得到函数ysin(2x)的图象;把得到的图象向上平移个单位长度,得到函数ysin(2x)的图象;综上得到函数ycos2xsinxcosx1的图象.评述:本题主要考查三角函数的图象和性质,考查利用三角公式进行恒等变形的技能以及运算能力.32.(2000全国文,17)已知函数ysinxco

16、sx,xR.(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图象可由ysinx(xR)的图象经过怎样的平移和伸缩变换得到?32.解:(1)ysinxcosx2(sinxcoscosxsin)2sin(x),xRy取得最大值必须且只需x2k,kZ,即x2k,kZ.所以,当函数y取得最大值时,自变量x的集合为x|x2k,kZ(2)变换的步骤是:把函数ysinx的图象向左平移,得到函数ysin(x)的图象;令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数y2sin(x)的图象;经过这样的变换就得到函数ysinxcosx的图象.评述:本题主要考查三角函数的图象和性质,利用

17、三角公式进行恒等变形的技能及运算能力.33.(1995全国理,22)求sin220cos250sin20cos50的值.33.解:原式(1cos40)(1cos100)(sin70sin30)1(cos100cos40)sin70sin70sin30sin70sin70sin70.评述:本题考查三角恒等式和运算能力.34.(1994上海,21)已知sin,(,),tan(),求tan(2)的值.34.解:由题设sin,(,),可知cos,tan又因tan(),tan,所以tan2tan(2)35.(1994全国理,22)已知函数f(x)=tanx,x(0,),若x1、x2(0,),且x1x2,

18、证明f(x1)f(x2)f().35.证明:tanx1tanx2因为x1,x2(0,),x1x2,所以2sin(x1x2)0,cosx1cosx20,且0cos(x1x2)1,从而有0cos(x1x2)cos(x1x2)1cos(x1x2),由此得tanx1tanx2,所以(tanx1tanx2)tan 即f(x1)f(x2)f().36.已知函数求它的定义域和值域; 求它的单调区间; 判断它的奇偶性; 判断它的周期性.解(1)x必须满足sinx-cosx0,利用单位圆中的三角函数线及,kZ 函数定义域为,kZ 当x时, 函数值域为)(3)定义域在数轴上对应的点关于原点不对称,不具备奇偶性(4) f(x+2)=f(x) 函数f(x)最小正周期为2注;利用单位圆中的三角函数线可知,以、象限角平分线为标准,可区分sinx-cosx的符号;以、象限角平分线为标准,可区分sinx+cosx的符号37. 求函数f (x)=的单调递增区间解:f (x)= 令,y=,t是x的增函数,又00,2kpt2kp+ (kZ),2kp2kp+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论