版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、CONTENTS目录Pricing and Valuation of ForwardCommitmentsValuation of Contingent ClaimsCFA Level IIDerivativesWarm-upt=0Pricingt=tValuationt=TSettlementWarm-up Pricing: 确定远期价格 (t=0). Valuation: 签订合约期间的某一时刻是否赚钱(t =t). 合约签
2、订期初时,双方的价值都为0 (forward commitment)。Non-Arbitrage Principle Arbitrage: 在不同市场同时买卖相同资产并获利 (低买高卖). Arbitrage opportunities: 相同的东西卖不同的价格. The no-arbitrage principle(Law of one price): 不存在任何套利机会. The no-arbitrage principle 可以用来对衍生品进行定价。 FP=S0(1+Rf)TPricing and Val
3、uation of Forward Commitments No-Arbitrage Rule Equity Forward and Futures Interest Rate Forward and Futures (FRA) Fixed-income Forward and Futures Currency Forward and Futures Interest Rate Swap Currency Swap Equity SwapNon-Arbitrage PrincipleAt initiationA
4、t settlement date1. 借钱 S0 2. 买资产3. Short一份远期合约1. 把资产交割给long方 2. 获得FP的现金 3. 偿还本金和利息 Profit=FP-S0(1+Rf)TNon-Arbitrage Principle Cash-and-carry Arbitrage: 正向套利。 If FPS0(1+Rf )TNon-Arbitrage PrincipleAt initiationAt settlement date1. 卖空标的资产,获得S0的现金 2. 存银行 3. Lon
5、g一份远期合约 1. 支付给short方FP的现金 2. 把标的资产还给借出资产的一方 3. 获得本金和利息 Profit=S0(1+Rf )T-FPNon-Arbitrage Principle Reverse-cash-and-carry Arbitrage: 反向套利。 If FPS0(1+Rf )TPricing and Valuation of Forward Commitments No-Arbitrage Rule Equity Forward and Futures Interest Rate
6、Forward and Futures (FRA) Fixed-income Forward and Futures Currency Forward and Futures Interest Rate Swap Currency Swap Equity SwapNon-Arbitrage Principle General pricing formula: FP=(S0-PVbenefit+PVcost)(1+Rf)TExample1Calculate the no-arbitrage forward pri
7、ce for a 120- day forward on a stock that is currently priced at$20.00 and is expected to pay a dividend of $0.5 in 15 days, $0.5 in 75 days, and $0.50 in 180 days. The annual risk-free rate is 3%, and the yield curve is flat. 0.5 0.5PVD = 1.0315/365+1.0375/365 =$0.9964FP = ($20-$0.9964)1.03120/365=
8、$19.19Equity Forward and Futures Forward contracts on a dividend-paying stock Price: FP=(S0-PVD0)(1+Rf)T Value at time t: Vlong=St-PVDt-FP/(1+Rf)(T-t)Equity Forward and Futures EquityIndexForwardContractsWith Continuous Dividends Rfc= ln(1+Rf)c-c)T FP (on an
9、 equity index)=S0e(Rf Where: Rfc=continuously compounded risk-free rate c=continuously compounded dividend yieldcc(T-t) Vlong=St / e (T-t)-FP/ eRfExample2After 70 days, the value of the stock in the previous example is $40.00. Calculate the value of the equity forward contract on the stock to the lo
10、ng position, assuming the risk-free rate is still 3% and the yield curve is flat. 0.5 PVD=1.035/365=$0.4998; 19.19 V(long position)=($40-$0.4998)-=$20.391.0350/365ExampleAfter 90 days, the value of the index in the previous example is 1,030. Calculate the va
11、lue to the long position of the forward contract on the index, assuming the continuously compounded risk-free rate is 4.5% and the continuous dividend yield is 2.0%.Answer:V90(of the long position) =( 1030 )-. /( 1245 )=-209.2. /ExampleThe value of the S&P 500 index is 1,230. The continuously compou
12、nded risk-free rate is 5% and the continuous dividend yield is 2%. Calculate the no-arbitrage price of a 150-day forward contract on the index.Answer:FP =1,230x e(0.05-0.02)X(150/365) =1,245Interest Rate Forward and Futures (FRA) FRA定义: 标的资产是利率的远期合约。 The lon
13、g position: 借入钱的人。 The short position: 借出钱的人。 FRA报价: 14FRA?; 36FRA?Pricing and Valuation of Forward Commitments No-Arbitrage Rule Equity Forward and Futures Interest Rate Forward and Futures (FRA) Fixed-income Forward and Futures Currency Forward and Futures Interest Rate Swap Currency Swap Equity S
14、wapExampleCalculate the price of a 14FRA.The current 30- day LIBOR is 2% and 120-day LIBOR is 4%.Theactual30-dayrate(Period): R(30)=0.02 30/360=0.0017Theactual120-dayrate(Period): R(120)=0.04 120/360=0.013The actual 90-day forward rate in 30 days from now (p
15、eriod): 1+R(120) / 1+R(30) -1=1.013/1.0017-1=0.0113.Interest Rate Forward and Futures (FRA) The no-arbitrage forward rate(FR).L(m)/mFR/nL(m+n)/m+n(1+Lm m/360)(1+FR n/360)=(1+Lm+n (m+n)/360)Pricing and Valuation of Forward Commitments No-Arbitrage Rule Equity
16、 Forward and Futures Interest Rate Forward and Futures (FRA) Fixed-income Forward and Futures Currency Forward and Futures Interest Rate Swap Currency Swap Equity SwapExampleThe annualized forward rate, which is the price of the FRA, is: RFRA=0.0113360/90=0.0452=4.52%.http:/www.
17、ExampleCalculate the price of a 240-day forward contract on a 6% U.S. Treasury bond with a spot price of$ 1,020 (including accrued interest) that has just paid a coupon and will make another coupon payment in 180 days. The annual risk-free rate is 5%. Remember that U.S. Treasury bonds mak
18、e semiannual coupon payments:Fixed-income Forward and Futures Coupon bonds: 与分红的股票远期类似,只是现金流是coupon。 Price: FP=(S0-PVC0)(1+Rf)T Value: Vlong=St-PVCt-FP/(1+Rf)(T-t)Pricing and Valuation of Forward Commitments No-Arbitrage Rule Equity Forward and Futures Inter
19、est Rate Forward and Futures (FRA) Fixed-income Forward and Futures Currency Forward and Futures Interest Rate Swap Currency Swap Equity SwapAnswerC= 10000.062=30 30PVC=1.05180/365=29.29 30FP=(1020-1.05180/365) (1+5%)(240/365) =1023Currency Forward and Futur
20、esSt FP Value: V=long(1+R )Tt(1+R )TtFD If continuous interest rates:CC FP=S e(RDR )T0F Vlon S(tc)( FP) eRg=(Tt)eRc(Tt)FDCurrency Forward and Futures Price: covered Interest Rate Parity (IRP): FP=S0(1+RD)T/(1+RF)T RD: risk-free rate of domestic currency RF: risk-free rate of foreign currency DC/FCht
21、tp:/AnswerCHF: rfc=ln(1.06)=0.0583 USD: rc=ln(1.05)=0.0488S0=$0.57T=100/365 FP=($0.57 e0.0583(100/365)(e0.0488(100/365)=$0.5686ExampleThe U.S. risk-free rate is 5 percent, the Swiss risk- free rate is 6 percent, and the spot exchange rate between the United States
22、 and Switzerland is$0.57. Calculate the continuously compoundedU.S. and Swiss risk-free rates. Calculate the price at which you could enter into a forward contract that expires in 100 days. Calculate the value of the forward position 30 days into the contract. Assume that the spot rate is $0.60.http
23、:/Pricing and Valuation of Forward Commitments No-Arbitrage Rule Equity Forward and Futures Interest Rate Forward and Futures (FRA) Fixed-income Forward and Futures Currency Forward and Futures Interest Rate Swap Currency Swap Equity SwapAnswerVt=(0.60e0.0583(70/3
24、65)($0.5686e0.0488(70/365)=$0.03The value of the contract is $0.03 per Swiss franc.Interest Rate Swap 1=CB1+CB2+CB3+Bn(C+1) C=B1B +B1+B2+ C 是一个periodic rate, 必须年化,获得annual swap rate.Interest Rate Swap A plain vanilla swap: 一方支付固定利率,一方支付浮动利率。 Pricing a plain
25、vanilla swap: 计算固定利率 (swap rate)。AnswerStep1: Calculate the discount factorsB1=1/(1+1.5%90/360)=0.9963; B2=1/(1+2%180/360)=0.9901; B3=1/(1+3.5%270/360)=0.9744; B4=1/(1+5%360/360)=0.9524.ExampleCalculate the swap rate of a 1-year quarterly-pay plain-vanilla s
26、wap. The LIBOR spot rates are:R(90-day)=1.5%; R(180-day)=2%; R(270-day)=3.5%; R(360-day)=5%.Interest Rate Swap The market value of a swap to the pay-fixed side is Vswap(pay-fixed)=MVflt-MVfix Vswap(pay-floating)=MVfix-MVfltAnswerStep2: C=(1-B4)/(B1+B2+B3+B4)
27、=(1-0.9524)/(0.9963+0.9901+0.9744+0.9524)= 1.22%Step3:Swap rate=1.22%360/90=4.88%.AnswerStep1: B1=1/(1+2.5%60/360)=0.9959;B2=1/(1+3%150/360)=0.9877; B3=1/(1+3.5%240/360)=0.9772; B4=1/(1+4%330/360)=0.9646;Step2: PV(fixed)=1.22%(0.9959+0.9877+0.9772+0.964 6)+1
28、0.9646=1.01249ExampleCalculate the value of the plain vanilla swap to the pay-fixed side in the previous example after 30 days. The swap rate is 4.88% and the notional principal is $1million. Assume after 30 days the LIBOR spot rates are:R(60day)=2.5%; R(150-day)=3%; R(240-day)=3.5%; R(330-day)=4%.h
29、ttp:/AnswerStep 4: Calculate the swap value to the pay-fixed side: V= PV(floating)-PV(fixed) notional principal=(0.999635-1.01249)$1 million=$-12,855.375AnswerStep3:Thefirstpaymentatinitiation: 1.5%90/360=0.00375.PV(floating)=(1+0.00375)0.9959=0.999635http:/www.ze
30、Currency Swap 假设dollar 和Euro 之间进行Currency Swap: Swap1: pay dollar fixed and receive Euro fixed. Swap2: pay dollar fixed and receive Euro floating. Swap3: pay dollar floating and receive Euro fixed. Swap4: pay dollar floating and receive Euro floating. In the swap4 (floa
31、ting for floating),没有pricing问题。Pricing and Valuation of Forward Commitments No-Arbitrage Rule Equity Forward and Futures Interest Rate Forward and Futures (FRA) Fixed-income Forward and Futures Currency Forward and Futures Interest Rate Swap Currency Swap Equity Swaphttp:/www.ze
32、ExampleNow move forward 120 days. The new exchange rate is $1.32 per pound, and the new U.S. term structure is:L$(60)=0.0623120The comparable set of rates areL(60)=0.0527 120L$(240)=0.0639120L(240)=0.0552 120L$(420)=0.0643120L(420)=0.0567 120L$(600)=0.0687120L(600)=0.0585 120ExampleConsider
33、 a two-year currency swap with semiannual payments. The domestic currency is the U.S. dollar, and the foreign currency is the U.K. pound. The current exchange rate is $1.51 per pound.A. Calculate the annualized fixed rates for dollars and pounds:L0$(180)=0.0545The comparable set of rates areL0(180)=
34、0.0483L0$(360)=0.0625L0(360)=0.0526L0$(540)=0.0635L0(540)=0.0539L0$(720)=0.0675L0(720)=0.0561AnswerA: First calculate the fixed payment in dollars and pounds. The dollar present value factors for 180, 360, 540, and 720 days are as follows:ExampleB. Assume th
35、at the notional principal is $1 or the corresponding amount in British pounds. Calculate the market values of the following swaps:Pay fixed and receive $ fixed; Pay floating and receive $ fixed; Pay floating and receive $ floatingAnswerB:The new dollar and p
36、ound factors for 60, 240, 420, and 600 days are as follows:AnswerThe semiannual and annualized fixed payment of per $1 of notional principal is 10.8811=0.0321 or0.9735+0.9412+0.9130+0.88110.0641 for annualized.Similarly the semiannual and annualized fixed payment of per 1 of notional principal is: 0
37、.0269 or 0.0538 for annualized.AnswerThe present value of the remaining fixed payments plus the 1 notional principal is 0.0269(0.9913+0.9645+0.9379+0.9112)+1(0.9112)=1.0136. Convert this amount to the equivalent of$1 notional principal and convert to dollars
38、 at the current exchange rate:1/1.511.321.0136 = $0.8861.AnswerThe present value of the remaining fixed payments plus the $1 notional principal is 0.0321(0.9897 + 0.9591 + 0.9302 + 0.8973) + 1(0.8973) = 1.0185.The present value of the floating payments plus hypothetical $1 notional principal discoun
39、ted back 120 days is 1.02725(0.9897)= 1.0167AnswerConvert this amount to the equivalent of $1 notional principal;and convert to dollars at the current exchange rate 1/1.511.321.015=$0.8873. The market values based on notional principal of $1 are as follows:P
40、ay fixed and receive $ fixed=$0.0464=1.0185-0.8861 Pay floating and receive $ fixed=$0.0424=1.0185-0.8873Pay floating and receive $ floating=$0.0461=1.0167-0.8873 Pay fixed and receive $ floating=$0.0501=1.0167-0.8861AnswerThe present value of the floating payments plus hypothetical 1 notional princ
41、ipal: 1.02415(0.9913)=1.015Equity Swap 三种equity swaps: Pay fixed rate and receive equity return; Pay floating rate and receive equity return; Pay one equity return and receive another equity return. C= B1B n1+B2+B nPricing and Valuation of Forward Commitment
42、s No-Arbitrage Rule Equity Forward and Futures Interest Rate Forward and Futures (FRA) Fixed-income Forward and Futures Currency Forward and Futures Interest Rate Swap Currency Swap Equity SwapAnswerStep1: Calculate the new discount factors 30days later: B1=
43、1/(1+2.5%60/360)=0.9958; B2=1/(1+3%150/360)=0.9877;B3=1/(1+3.5%240/360)=0.9772; B4=1/(1+4%330/360)=0.9646Step2: PV(fixed)=0.955%(0.9958+0.9877+0.9772+0.9646)+ 10.9646=1.002087ExampleAn equity swap has the annual swap rate of 3.82% and the notional principal of $1million.The underlying is an index, c
44、urrently trading at 1,000. Assume after 30 days the index becomes1,200 and the LIBOR spot rates are:R(60-day)=2.5%; R(150-day)=3%; R(240day)=3.5%; R(330day)=4%.Calculate the value of the equity swap to the fixed-rate payer.CONTENTS目录Pricing and Valuation of
45、ForwardCommitmentsValuation of Contingent ClaimsAnswerStep3: PV(index)=11200/1000=1.2Step4:V= PV(index)-PV(fixed) notional principal=(1.2-1.002087)$1million=$197,913Stock Binomial Model Stock Binomial Model (one-period) Stock Binomial Model (two-period) Hedg
46、ing RatioValuation of Contingent Claims Stock Binomial Model Interest rate Binomial Model Black-Scholes-Merton Model (BSM) Black Model Option Greeks and Implied VolatilityStock Binomial Model (one-period) Risk-neutral probability of an up move is u; Risk-neu
47、tral probability of an down move is =1- , 1+Rfd duu=ud. C1+=Max (0, S1 +-X); C1 = Max (0, S1 -X) C = C + C 10u 1d 11+RTfStock Binomial Model (one-period)S1+=S0uS0S1-=S0dStock Binomial Model (two-period) Call optionS+=S UU0+c+ =MAX (0, S+-X)S =S0Uc+SS+-(=S-+
48、)=S0UD0c=?c+- = MAX (0, S+-X)S-=S0Dc-S-=S0DDc-=MAX (0,S-X)美式看涨怎么处理? Stock Binomial Model Stock Binomial Model (one-period) Stock Binomial Model (two-period) Hedging RatioStock Binomial Model (two-period) Rf=2%,U=1.2,D=0.8 1+R fd 1+2%0.8u=ud= 1.20.8 =0.55 p+=
49、 0.550+0.452.4 /(1+2%)=1.06 p- = (0.552.4+0.455.6)/(1+2%)=3.76 p= (0.551.06+0.453.76)/(1+2%)=2.23Stock Binomial Model (two-period) Put option (X=12, Rf=2%,U=1.2,D=0.8)S0U=101.2=12 p+ =0S0UU=101.21.2=14.4 p+=0 S =10 S0UD=120.8=9.60p+- =12-9.6=2.4 S0D=100.8=8.S0DD=100.80.8=6.4p- =12-8=4p- =12-6.4=5.6
50、Hedging Ratio Hedging ratio=(C+-C-)/(S+-S-) 如果overpriced, 卖出,买入Hedging ratio份股票; 如 果underpriced, 买 入,卖 出 Hedging ratio份股票。Stock Binomial Model Stock Binomial Model (one-period) Stock Binomial Model (two-period) Hedging Ratiohttp:/www.zej
51、Interest rate Binomial Model Interest rate caplet: 类似于一个call option on interest rates. Expiration value of caplet=max 0, (one year rate-cap rate) notional principal Interest rate floorlet: 类似于一个put option on interest rates. Expiration value of floorlet=max 0, (floor rate- one year rate) notional principalValuation of Contingent Claims Stock Binomial Model Interest rate Binomial Model Black-Scholes-Merton Model (BSM) Black Model Option Greeks and Implied VolatilityExampleInt. Rate=8.58%Int. Rate=6.40%Int. Rate=5.13%Int. Rate=5.90%Int. Rate=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026广东深圳盐田高级中学教师招聘3人备考题库附参考答案详解(突破训练)
- 新材料切削性能评估-洞察与解读
- 2026年度黑龙江省交通运输厅所属事业单位公开招聘工作人员86人备考题库含答案详解(培优b卷)
- 2025沪昆高铁邵阳北站站前综合事务服务中心选调1人备考题库(湖南)附答案详解(综合题)
- 2026上半年贵州事业单位联考贵州电子信息职业技术学院招聘4人备考题库及完整答案详解1套
- 2026广东深圳大学金融科技学院博士后招聘备考题库含答案详解
- 服务质量改进策略-第1篇-洞察与解读
- 2026新疆、内蒙古风电叶片工厂(央企)招聘备考题库及答案详解(考点梳理)
- 2026广东广州花都区新雅街第二小学临聘教师招聘3人备考题库附参考答案详解(达标题)
- 2026北京首都体育学院附属竞技体育学校文化课教师招聘3人备考题库含答案详解(研优卷)
- GB/T 45891-2025肥料和土壤调理剂肥料原料中腐植酸和疏水性黄腐酸含量的测定
- DB54T 0496-2025 退化高寒草原免耕补播技术规程
- 住建局窗口管理办法
- 2025年离婚抖音作品离婚协议书
- 新时代教育者核心素养与使命担当
- 2024年新高考Ⅰ卷数学真题解题技巧(1题2-4解)和考前变式训练(原卷版)
- 加气站气瓶充装质量保证体系手册2024版
- 2025年九江职业大学高职单招职业技能测试近5年常考版参考题库含答案解析
- 上海市重点建设项目社会稳定风险评估报告编制指南
- 专题03绕某点旋转90度求坐标
- 《6.2.2 平面向量的数量积》考点讲解复习与同步训练
评论
0/150
提交评论