2015数学中考探究题_第1页
2015数学中考探究题_第2页
2015数学中考探究题_第3页
2015数学中考探究题_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.2015数学中考探究题、变式题29已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点(1)如图1,当点P与点Q重合时,AE与BF的位置关系是 _AEBF,QE与QF的数量关系式_ ;QE=QF(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明338(1)如图(1),已知:在ABC中,BAC=90,AB=AC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E证明:DE

2、=BD+CE(2)如图(2),将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有BDA=AEC=BAC=,其中为任意锐角或钝角请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若BDA=AEC=BAC,试判断DEF的形状39【提出问题】(1)如图1,在等边ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边AMN,连结CN求证:ABC=AC

3、N【类比探究】(2)如图2,在等边ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论ABC=ACN还成立吗?请说明理由【拓展延伸】(3)如图3,在等腰ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰AMN,使顶角AMN=ABC连结CN试探究ABC与ACN的数量关系,并说明理由41(1)观察发现 如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下: 作点B关于直线m的对称点B,连接AB,与直线m的交点就是所求的点P,线段AB的长度即为AP+BP的最小值 如图(2):在等边三角形ABC中,A

4、B=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为_(2)实践运用 如图(3):已知O的直径CD为2, AC的度数为60,点B是 AC的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为_ (3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法88如图1,ABC为等腰直角三角形,ACB=90,F是AC边上的一个动点(点F与A、C不重

5、合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD(1)猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、图3的情形图2中BF交AC于点H,交AD于点O,请你判断中得到的结论是否仍然成立,并选取图2证明你的判断(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,ACB=90,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD= ,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值125阅读下面材料:小明遇到这样一个问题:如图

6、1,在边长为a(a2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当AFQ=BGM=GHN=DEP=45时,求正方形MNPQ的面积小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得RQF,SMG,TNH,WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为 _(2)求正方形MNPQ的面积(3)参考小明思考问题的方法,解决问题:如图3,在等边ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边RPQ若SRPQ=

7、 ,则AD的长为_ 15小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,ADBC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=SABF(S表示面积)问题迁移:如图2:在已知锐角AOB内有一个定点P过点P任意作一条直线MN,分别交射线OA、OB于点M、N小明将直线MN绕着点P旋转的过程中发现,MON的面积存在最小值,请问当直线MN在什么位置时,MON的面积最小,并说明理由实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角

8、形隔离区MON若测得AOB=66,POB=30,OP=4km,试求MON的面积(结果精确到0.1km2)(参考数据:sin660.91,tan662.25, 1.73)拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)( ,)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值196【阅读】如图1,在平面直角坐标系xOy中,已知点A(a,0)(a0),B(2,3),C(0,3)过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为,将四边形OABC的直角

9、OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ,a【理解】若点D与点A重合,则这个操作过程为FZ , ;3【尝试】(1)若点D恰为AB的中点(如图2),求;(2)经过FZ45,a操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;【探究】经过FZ,a操作后,作直线CD交x轴于点G,交直线AB于点H,使得ODG与GAH是一对相似的等腰三角形,直接写出FZ,a236阅读材料如图,ABC与DEF都是等腰直角三角形,ACB=EDF=90,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明BOFCOD,则BF=CD解决问题(1)将图中的RtDEF绕点O旋转得到图,猜想此时线段BF与CD的数量关系,并证明你的结论;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论