固体物理晶格振动与晶体的热力学函数_第1页
固体物理晶格振动与晶体的热力学函数_第2页
固体物理晶格振动与晶体的热力学函数_第3页
固体物理晶格振动与晶体的热力学函数_第4页
固体物理晶格振动与晶体的热力学函数_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三章 晶格振动与晶体的热力学函数 一、 填空体 1. 若在三维空间中,晶体由N个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的 振动,_ N_个波矢, 3N_支格波。 ? 。24N/ZnS晶体,如果晶胞的体积为 ,则晶格振动的模式书为的2. 体积为V 3。 的关系为CvT三维绝缘体晶体的低温比热Cv与温度T3. 4. 某三维晶体由N个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N 支光学波。 2。CvT Cv与温度T的关系为5. 二维绝缘体晶体的低温比热 6. 一维绝缘体晶体

2、的低温比热Cv与温度T的关系为CvT。 4。UT 三维绝缘体晶体的低温平均内能与温度T的关系为7. 3。UT 二维绝缘体晶体的低温平均内能与温度T的关系为8. 2。UT 一维绝缘体晶体的低温平均内能温度T的关系为9. 10.绝缘体中与温度有关的内能来源于 晶格振动能 。 11.导体中与温度有关的内能来源于 晶格振动能 和 价电子热运动动能 。 12. 某二维晶体由N个原胞组成,每个原胞内有2个原子。考虑晶体的晶格振动,其色散关系共有 4N 支,其中 2N 支声学波,包括 N 支横声学波, N 支纵声学波;另有 2N 支光学波。 13. 某一维晶体由N个原胞组成,每个原胞内有3个原子。考虑晶体的

3、晶格振动,其色散关系共有 3N 支,其中 N 支声学波,包括 N 支横声学波, 0 支纵声学波;另有 2N 支光学波。 ?q? 。 ,其能量为 ,准动量为 14.晶格振动的元激发为 声子 15德拜模型的基本假设为:格波作为弹性波、 介质是各向同性介质。 V ;对二维面积为S的晶体,波矢空间中的对三维体积为16.V的晶体,波矢空间中的波矢密度为: 3?)(2 LS。 的晶体,波矢空间中的波矢密度为:波矢密度为: ;对一维长度为L 2?2)(2 二、基本概念 1. 声子晶格振动的能量量子。 2.波恩-卡门条件 即周期性边界条件,设想在实际晶体外,仍然有无限多个相同的晶体相连接,各晶体中相对应的原子

4、的运动情况都一样。 3.波矢密度 Vc,Vc波矢空间单位体积内的波矢数目,三维时为为晶体体积。 3?)2( 4. 模式密度 单位频率间隔内模式数目。 5.晶格振动。答:由于晶体内原子间存在着相互作用,原子的振动就不是孤立的,而要以波的形式在晶体中传播,形 成所谓格波,因此晶体可视为一个互相耦合的振动系统,这个系统的运动就叫晶格振动。 简谐近似6.答:当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。这个近似即称为简谐近似。 7.格波 答:晶格中的原子振动是以角频率为的平面波形式存在的,这种波就叫格波。 三、简答题 试分析爱因

5、斯坦模型和德拜模型的特点及局限性. 1.特点: 1)爱因斯坦模型假设晶体中所有原子都以相同的频率作振动; 2)德拜模型的基本思想是把格波作为弹性波来处理。 局限性: 3T在爱因斯坦的假设下,解释了在甚低温时温度的变化趋势,但是不能解释为什么晶体热熔随温度) 1的速度变化,这是因为,爱因斯坦模型只考虑了光学支格波,忽略了声学支格波,而在甚低温决定晶体热容的主要是长声学波。爱因斯坦模型过于简化。 2) 德拜模型不仅能够很好解释在甚低温时晶体热容随温度的变化趋势,同时得出了在甚低温下,热容与3成正比的规律。但是德拜模型忽略了晶体的各向异性,即光学波和高频声学波对热容的贡献。 T2. 长光学支格波与长

6、声学支格波本质上有何差别? 答:长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波. 3. 晶体中声子数目是否守恒? 的格波的(平均) 声子数为?答:频率为 , 即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量. 4. 温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多? 的格波的(平

7、均答:频率为) 声子数为 . ( ), 所以在温度一定情况, ( )因为光学波的频率 比声学波的频率大于 高下, 一个光学波的声子数目少于一个声学波的声子数目. 5. 对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多? ( ), 小于THTL, 由于)( 所以温度高时的声子数目多于温度低时?答:设温度. 的声子数目 ? 6. 高温时, 的格波的声子数目与温度有何关系频率为 (答:温度很高时?, 频率为?, 的格波的平均) 声子数为 . . 格波的声子数目与温度近似成正比可见高温时, ? 长声学格波能否导致离子晶体的宏观极化7. ), 答:长光学格波所以能导致离子晶体的宏观

8、极化其根源是长光学格波使得原胞内不同的原子(正负离子长声学格波不能导致离, 原胞内所有的原子没有相对位移. 因此, 产生了相对位移. 长声学格波的特点是. 子晶体的宏观极化 试定性给出一维单原子链中振动格波的相速度和群速度。8.?qa?sin?2 答:由一维单原子链的色散关系2m?qaqa?/?asin? 可求得一维单原子链中振动格波的相速度为 p2m2q 群速度为q 的取值将周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,9.会怎样? 答:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部

9、原子有所差别。考虑到边界对内部原子振动状态的影响,波Na的有限晶体边界之外,仍然有无穷多个恩和卡门引入了周期性边界条件。其具体含义是设想在一长为相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j个原子和第Nt+j个原子的运动情况一样,其中t 1,2,3。 q只能取一些分立的不同值。如果晶体是无限大,波矢引入这个条件后,导致描写晶格振动状态的波矢q的取值将趋于连续。 下图表示一维双原子复式晶格振动的两支格波的色散关系。请简要分析并判断:在长波极限下,图中10.哪一条曲线反映了初基元胞内两个原子的质心振动?图中哪一条曲线反映了初基元胞内两个原子的相对振动? 答: 上半部分曲线表示光学支,

10、光学支格波反映了晶体中分子内两个原子的相对振动;下半部分曲线表示声学支,声学支格波反映了晶体中分子的质心振动。 由N个原胞所组成的复式三维晶格,每个原胞内有r个原子,试问晶格振动时能得到多少支色散关系?其波矢的取值数和模式的取值数各为多少? 答:共有3r支色散关系,波矢取值数=原胞数N,模式取值数=晶体的总自由度数。 11.对于初基晶胞数为N的二维晶体,基元含有四个原子,声学支震动模式和光学支震动模式的数目各为多少? 答:2N,6N。 12.在三维晶体中,格波独立的点数N,格波个数,格波总支数,声学波支数分别等于多少? 答:在三维晶格中,格波独立的点数是,格波个数有3Nn,格波总支数是3nN,

11、对每个波矢q,有3支声学波,(3n-3)支光学波。 13.试述长光学波与长声学波的本质区别? 答:长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最, 振动频率较低, 原胞做整体运动, 高的振动模式。长声学支格波的特征是原胞内的不同原子没有相对位移非复(, 但简单晶格, 波速是一常数。 任何晶体都存在声学支格波它包含了晶格振动频率最低的振动模式 晶体不存在光学支格波。式格子)? 长声学格波能否导致离子晶体的宏观极化14. )正负离子答:长光学格波所以能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(因此,长声学格波不能导致离. , 原胞

12、内所有的原子没有相对位移产生了相对位移。长声学格波的特点是 子晶体的宏观极化。? 爱因斯坦模型在低温下与实验存在偏差的根源是什么15.13Hz10属于光学支按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为, 答:低温下对热容贡献大的主要是长但光学格波在低温时对热容的贡献非常小, 频率. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下声学格波. 与实验存在偏差的根源。 ? , 16.德拜模型为什么与实验相符在甚低温下得到激发的只是声而且声子能量较大的短声学格波也未被激发,答:在甚低温下, 不仅光学波得不到激发, 在甚低温因此, . 德拜模型只考虑弹性波对热容的贡献. 子能

13、量较小的长声学格波. 长声学格波即弹性波 , 自然与实验相符。下, 德拜模型与事实相符 四、证明计算 1. 证明一维单原子链的运动方程,在长波近似下,可以化成弹性波方程, 证明: n个原子的运动方程为第 因为 个原子的运动方程化为所以第n 在长波近似下, 运动方程又化为l 在长波近似下,当为有限整数时,上式说明,在长波近似下,邻近(在半波长范围内)的若干原子以相同的振幅、相同的位相做集体运 )式可统一写成动因此( l (n?l)a可视为准连续坐标观上的质点位移u,从宏观上看,原子的位置可视为准连续的,原子的分离 x,即 2)化成于是( 其中Mm?1,求证在一维双原子链中,如 2. 证明:双一维

14、原子链声学支 4mM?1?n ?1?1?xnx(当x?1)m?M?mM ,由近似式, ?14?MmMm21/22?sinqa1?1? 122(mMm?M) 得?2222qa?sinsinqa m?MM, 2?M?mM?m?M ,由于对 2B0?0 mA?2?2 M 故B0, 重原子静止。 ?,若只考虑近邻原子之间的相互作用,恢复力系数为3.在一维无限长的简单晶格中,原子质量为M试求格波的色散关系。 解:设原子的质量为 M ,第n个原子对平衡位置的位移为un第n+1和n-1个原子对平衡位置的位移分别为un+1与 un-1,则第n+m 和n-m个原子对第n个原子的作用力为 因此第 n 个原子的运动

15、方程为 将格波的试解 代入运动方程,得 由此得格波的色散关系为 证明:在温度T时,一个量子谐振子的能量为 4.讨论当温度很高时,结果又会怎样? 证明:按照量子理论,一个谐振子的能级是 ?为谐振子的角频率;n取正整数。在热平衡条件下,谐振子的平均式中,?P? nn 能量为n?P的几率。若按玻耳兹曼统计计算,上式写成为谐振子处于能级 式中nn因为 故从上式得 ?1 2kT在高温下,有 B?kT 故得 B可见,在高温下,一个量子谐振子的平均能量与经典理论的结论相同。 5.在一维无限长的简单晶格中,若考虑原子间的长程作用力,第 n 个与第 n +m或 n-m 个原子间的恢复?m,试求格波的色散关系。

16、力系数为解:设原子的质量为 M ,第n个原子对平衡位置的位移为un第n+m和n-m个原子对平衡位置的位移分别为un+m与 un-m,则第n+m 和n-m个原子对第n个原子的作用力为 第 n 个原子受力的总合为 因此第 n 个原子的运动方程为 将格波的试解 代入运动方程,得 由此得格波的色散关系为 7.已知三维晶体在 附近一支光学波的色散关系为0?q?222?CqBqAqq? , 试求格波的模式密度z0xy222?Cq?Aq?Bq 解: zx0y2q22qqyzx1? 则? ?000 CAB4? ,而 这是q空间的一个椭球面,其体积为abc 321/2/211? , ,000?cb?aCBA3V

17、L? ,故椭球内的总状态数q空间内的波矢密度N为 ?q? 3?2)(2?212/1/?dNV1V?21/? 故0? ? 022?ABC4ABCd4? 计算一维单原子链的模式密度8.)D(NaL? 解:设单原子链长度 一维单原子链的色散关系为:?2? 其中mML2?)?D(模式密度为 ?2q对一维单原子链而言 因为 112? dqqa)qa2)da?cos(sin( 既有 m22 所以模式密度为 ?的简谐振动在温度T下的平均能量 已知一个频率为7. i试用爱因斯坦模型求出由N个原子组成的单原子晶体晶格振动的总能量,并求其在高温和低温极限情况下的表达式。 解:由N个原子组成的单原子晶体共有3N个自

18、由度,独立晶格振动方式数也等于3N,晶体振动的总能量便等于晶体振动的总能量便等于这3N个谐振动的能量之和,即 ? ,于是上式变为依照爱因斯坦模型,N321?E?x 设爱因斯坦温度,?为ETTkB1x (1) )?(xE?3NkTBx2e?1x,(1)式化作 在高温极限下,x1,式得 在低温极限下,e1e?2,试用德拜模型求三维晶格的零点振动能设晶格中每个振子的零点振动能为 8. 2?V3?Vg?23?v2 解:状态密度2?V31?DD?dE?d?0032?v2200 则 3。 设有三维间立方晶格,在德拜近似下计算比热,并论述在低温极限声子数目与T9.解:按照德拜模型, 晶体中的声子数目N为 .

19、 作变量代换 , . 其中 是德拜温度. 高温时, , 即高温时, 晶体中的声子数目与温度成正比. ? 低温时, , , 3. 成正比T晶体中的声子数目与, 即低温时的二维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与个相同原子组成的面积为S10. 有N2T 。?nndn?dn?kkdk2n,且到到证明:在间圆环的面积间的独立振动模式对应于平面中半径2?s53L?d?2?ndn?kdkkdk即2?v222? 则 3 有三维简单晶格,在德拜近似下计算比热,并论述在低温极限声子数目与11.T。?N 为按照德拜模型, 晶体中的声子数目 . 作变量代换 , . 其中 是德拜温度. 高温时, , 即高温时, 晶体中的声子数目与温度成正比. ? 低温时, , , 3成正比. 晶体中的声子数目与T, 即低温时12.有N个相同原子组成的体积为L的一维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与T。. 13. 在一维无限长的简单晶格中,原子质量为M,若只考虑近邻原子之间的相互作用,恢复力系数为?,试求格波的色散关系。 解:设原子的质量为 M ,第n个原子对平衡位置的位移为un第n+1和n-1个原子对平衡位置的位移分别为un+1与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论