




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题4.4 函数yAsin(x)的图象及三角函数模型的应用【考情分析】1了解函数yAsin(x)的物理意义;能画出yAsin(x)的图象,了解参数A,对函数图象变化的影响2了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题【重点知识梳理】知识点一 函数yAsin(x)的图象1函数yAsin(x)的有关概念yAsin(x)振幅周期频率相位初相(A0,0)ATf2.用五点法画yAsin(x)一个周期内的简图用五点法画yAsin(x)一个周期内的简图时,要找五个关键点,如下表所示:xx2yAsin(x)0A0A03.由函数ysin x的图象变换得到yAsin(x)(A0,
2、0)的图象的两种方法知识点二 三角函数模型的简单应用三角函数模型在实际中的应用体现在两个方面:(1)已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则(2)把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模【典型题分析】高频考点一 函数yAsin(x)的图象及变换【例1】 (2017全国卷)已知曲线C1:ycosx,C2:ysin,则下面结论正确的是()A把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B把C1上各点的横坐标伸长到原来的2倍,纵坐标不变
3、,再把得到的曲线向左平移个单位长度,得到曲线C2C把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【答案】D【解析】易知C1:ycosxsin,把曲线C1上的各点的横坐标缩短到原来的倍,纵坐标不变,得到函数ysin的图象,再把所得函数的图象向左平移个单位长度,可得函数ysinsin的图象,即曲线C2,因此D项正确。【方法技巧】三角函数图象变换的两个要点常规方法主要有两种:先平移后伸缩;先伸缩后平移值得注意的是,对于三角函数图象的平移变换问题,其平移变换规
4、则是“左加、右减”,并且在变换过程中只变换其自变量x,如果x的系数不是1,则需把x的系数提取后再确定平移的单位长度和方向方程思想可以把判断的两函数变为同名的函数,且x的系数变为一致,通过列方程求解,如ysin 2x变为ysin2x,可设平移个单位长度,即由2(x)2x解得,向左平移,若0说明向右平移|个单位长度【变式探究】(2020湖南省长郡中学模拟)若把函数ysin的图象向左平移个单位长度,所得到的图象与函数ycos x的图象重合,则的一个可能取值是()A2B.C. D.【答案】A【解析】ysin和函数ycos x的图象重合,可得2k,kZ,则6k2,kZ.2是的一个可能值高频考点二 由图象
5、求函数yAsin(x)的解析式【例2】(2020山东卷)下图是函数y= sin(x+)的部分图像,则sin(x+)= ( )A. B. C. D. 【答案】B【解析】由函数图像可知:,则,所以不选A,当时,解得:,即函数的解析式为:.而【方法技巧】确定yAsin(x)b(A0,0)的步骤和方法(1)求A,b:确定函数的最大值M和最小值m,则A,b;(2)求:确定函数的周期T,则可得;(3)求:常用的方法有代入法和五点法代入法:把图象上的一个已知点代入(此时A,b已知)或代入图象与直线yb的交点求解(此时要注意交点是在上升区间上还是在下降区间上)五点法:确定值时,往往以寻找“五点法”中的某一个点
6、为突破口【变式探究】【2019天津卷】已知函数是奇函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为若的最小正周期为,且,则( )ABCD【答案】C【解析】为奇函数,;又,又,故选C。高频考点三 三角函数图象与性质的综合应用【例3】(2019天津卷)已知函数f(x)Asin(x)(A0,0,|)是奇函数,将yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x)若g(x)的最小正周期为2,且g(),则f()()A2 BC. D2【答案】C【解析】f(x)Asin(x)为奇函数, k,kZ,又|,0,f(x)Asin x,则g(
7、x)Asin(x)由g(x)的最小正周期T2,得1,2.又g()Asin A,A2,f(x)2sin 2x,f()2sin ,故选C。【举一反三】 (2019全国卷)设函数f(x)sin(0),已知f(x)在0,2有且仅有5个零点下述四个结论:f(x)在(0,2)有且仅有3个极大值点;f(x)在(0,2)有且仅有2个极小值点;f(x)在单调递增;的取值范围是.其中所有正确结论的编号是()A BC D【答案】D【解析】如图,根据题意知,xA2xB,根据图象可知函数f(x)在(0,2)有且仅有3个极大值点,所以正确;但可能会有3个极小值点,所以错误;根据xA2xB,有2,得,所以正确;当x时,x,因为,所以,所以函数f(x)在单调递增,所以正确【变式探究】(2020广东省深圳中学模拟)已知函数f(x)sin(0)的图象与x轴相邻两个交点的距离为.(1)求函数f(x)的解析式;(2)若将f(x)的图象向左平移m(m0)个单位长度得到函数g(x)的图象恰好经过点,求当m取得最小值时,g(x)在上的单调递增区间【解析】(1)函数f(x)的图象与x轴相邻两个交点的距离为,得函数f(x)的最小正周期为T2,得1,故函数f(x)的解析式为f(x)sin.(2)将f(x)的图象向左平移m(m0)个单位长度得到函数g(x)sinsin的图象,根据g(x)的图象恰好经过点,可得s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年选任总经理协议样本
- 2025年医疗行业股权投资合作策划协议书样本
- 2025年委托培养合同协议
- 2025年工程保密协议规范示例
- 2025年金融公司保密协议范本
- 理赔业务风险培训持续性风险基础知识点归纳
- 理赔业务风险管理跨部门信息传递风险基础知识点归纳
- 人工智能在医疗健康领域的创新应用
- 开发民俗体验的现状及总体形势
- 大寒营销新突破
- 北京2025年北京市城市管理委员会直属事业单位招聘笔试历年参考题库附带答案详解析
- 鹰眼无人机商业计划书
- 2025年产销蚕丝织品行业深度研究报告
- 北京市烟草专卖局(公司)笔试试题2024
- 2024北京朝阳区六年级毕业考数学试题及答案
- 2025江苏苏州工业园区苏相合作区助理人员招聘15人易考易错模拟试题(共500题)试卷后附参考答案
- 压力容器行业未来发展趋势与市场前景分析
- 2025年度6深圳中考数学考点、知识点的总结模版
- 2025年全国国家版图知识竞赛题库及答案题(中小学组)
- 2025年广东省深圳市福田区中考二模历史试题(含答案)
- 环保管家合同全年
评论
0/150
提交评论