版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【高等数学基础】形考作业1参考答案第1章 函数第2章 极限与连续(一) 单项选择题下列各函数对中,(C)中的两个函数相等 A. , B. , C. , D. ,分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同A、,定义域;,定义域为R 定义域不同,所以函数不相等;B、,对应法则不同,所以函数不相等;C、,定义域为,定义域为 所以两个函数相等D、,定义域为R;,定义域为 定义域不同,所以两函数不等。故选C设函数的定义域为,则函数的图形关于(C)对称 A. 坐标原点 B. 轴 C. 轴 D. 分析:奇函数,关于原点对称;偶函数,关于y轴对称与它的反函数关于对称,奇函数与偶函数的前提是
2、定义域关于原点对称设,则所以为偶函数,即图形关于y轴对称故选C下列函数中为奇函数是(B) A. B. C. D. 分析:A、,为偶函数B、,为奇函数 或者x为奇函数,cosx为偶函数,奇偶函数乘积仍为奇函数C、,所以为偶函数D、,非奇非偶函数故选B 下列函数中为基本初等函数是(C) A. B. C. D. 分析:六种基本初等函数(1) (常值)常值函数(2) 为常数幂函数(3) 指数函数(4) 对数函数(5) 三角函数(6) 反三角函数 分段函数不是基本初等函数,故D选项不对对照比较选C下列极限存计算不正确的是(D) A. B. C. D. 分析:A、已知,B、, 初等函数在期定义域内是连续的
3、C、, 时,是无穷小量,是有界函数,无穷小量有界函数仍是无穷小量D、,令,则原式故选D当时,变量(C)是无穷小量 A. B. C. D. 分析;,则称为时的无穷小量A、,重要极限B、,无穷大量C、,无穷小量有界函数仍为无穷小量D、故选C若函数在点满足(A),则在点连续。 A. B. 在点的某个邻域内有定义 C. D. 分析:连续的定义:极限存在且等于此点的函数值,则在此点连续即连续的充分必要条件故选A(二)填空题函数的定义域是 分析:求定义域一般遵循的原则(1) 偶次根号下的量(2) 分母的值不等于0(3) 对数符号下量(真值)为正(4) 反三角中反正弦、反余弦符号内的量,绝对值小于等于1(5
4、) 正切符号内的量不能取 然后求满足上述条件的集合的交集,即为定义域要求得求交集 定义域为 已知函数,则 x2-x 分析:法一,令得则则 法二,所以 分析:重要极限,等价式推广则 则若函数,在处连续,则e 分析:分段函数在分段点处连续 所以函数的间断点是 分析:间断点即定义域不存在的点或不连续的点初等函数在其定义域范围内都是连续的分段函数主要考虑分段点的连续性(利用连续的充分必要条件)不等,所以为其间断点若,则当时,称为 时的无穷小量 分析: 所以为时的无穷小量(三)计算题设函数,求:解:,求函数的定义域解:有意义,要求解得, 则定义域为在半径为的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数解: A R O h E B C设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD2R直角三角形AOE中,利用勾股定理得,则上底故求解:求解:求解:求解: 求解:求解:设函数讨论的连续性,并写出其连续区间解:分别对分段点处讨论连续
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河道污染治理淤泥清理服务
- 乳制品运输委托协议范例
- 保健品运输合同签订技巧
- 仓储物流混凝土供应协议书
- 保健服务销售居间合同范本
- 商业空间工装装修合同协议
- 交通运输融资居间合同范例
- 婴童产业融资居间合同
- 海鲜酒楼职工餐厅装修合同
- 农村建设砖渣清运合同
- 荥阳市离婚协议书珍藏版
- 机动车检验机构内部审核表(依据评审准则和补充要求)
- 俯斜式路肩挡土墙施工方案
- SPSS期末统计分析报告
- 平遥县铸造业产业发展规
- 液化气站反恐防暴演练方案
- 苗德海教授-岩溶隧道建设风险及防治对策解析课件
- 高速公路作业安全常识及要求
- 2023年收银审核员-收银审核员技师考试题库+答案
- 2023关爱残疾人关爱残疾日帮残助残知识讲座
- 2016新编过盈量与装配力计算公式
评论
0/150
提交评论