版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、沪科版城父中学2013年八年级数学上册第13章三角形边角关系单元测试卷一、选择题(共10小题,每小题2分,满分20分)1、三角形的三边分别为3,1+2a,8,则a的取值范围是()A、6a3B、5a2C、2a5D、a5或a22、在ABC中,若A=54,B=36,则ABC是()A、锐角三角形B、钝角三角形C、直角三角形D、等腰三角形3、下面各组中的三条线段能组成三角形的是()A、2cm、3cm,5cmB、1cm、6cm、6cmC、2cm、6cm、9cmD、5cm、3cm、10cm4、下面命题是真命题的是()A、如果A=B,那么A和B是对顶角B、若直线y=kx+2过二、四象限,则k0C、如果ab=0
2、,那么a=0D、互为补角的两个角的平分线互相垂直5、在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()A、19cmB、19cm或14cmC、11cmD、10cm6、一个三角形的两边长分别为3和7,且第三边的边长为整数,这样的三角形的周长的最小值是()A、14B、15C、16D、178、等腰三角形的一个内角是50,则另外两个角的度数分别是()A、65,65B、50,80C、65,65或50,80D、50,509、下列命题中正确的是()A、对顶角一定是相等的B、没有公共点的两条直线是平行的C、相等的两个角是对顶角D、如果|a|=|b|,那么a=b10、已知三角形的三个外角的度数
3、比为2:3:4,则它的最大内角的度数为()A、90B、110C、100D、120二、填空题(共10小题,每小题2分,满分20分)11、三角形的最小角不大于 度,最大角不小于 度12、命题“对顶角相等”的逆命题是 ,这个逆命题是 命题13、如果等腰三角形的一边长是5cm,另一边长是7cm,则这个等腰三角形的周长为 14、ABC中,A+B=2C,则C= 15、如图所示,AOP=BOP=15,PCOA交OB于C,PDOA于D,若PC=4,则PD等于 16、如图,ABCD,B=68,E=20,则D的度数为 度17、命题“等角的余角相等”写成“如果,那么”的形式 18、命题“互为相反数的两数的和是0”的
4、逆命题是 ,它是 命题 (填“真、假”)19、如图,在ABC中,B=70,DE是AC的垂直平分线,且BAD:BAC=1:3,则C的度数是 度20、直角三角形的两个锐角的平分线所交成的角的度数是 三、解答题(共6小题,满分60分)21、在ABC中,A+B=C,B=2A,(1)求A、B、C的度数;(2)ABC按边分类,属于什么三角形?ABC按角分类,属于什么三角形?22、如图,说明A+B+C+D+E=180的理由23、已知等腰三角形的两边分别为3和6(1)求这个三角形的周长;(2)若(1)中等腰三角形的顶角的外角平分线所在的直线与底角的外角平分线所在的直线交于P点,探索锐角P与原等腰三角形顶角的关
5、系 24、如图,在ABC中(1)如果AB=7cm,AC=5cm,BC是能被3整除的的偶数,求这个三角形的周长(2)如果BP、CP分别是ABC和ACB的角平分线a、当A=50时,求BPC的度数b、当A=n时,求BPC的度数25、如图,已知ABC中,B=40,C=62,AD是BC边上的高,AE是BAC的平分线求:DAE的度数(写出推导过程)26、如图所示,P是ABC内一点,连接PB、PC,试比较PB+PC与AB+AC的大小答案:一、选择题(共10小题,每小题2分,满分20分)1、三角形的三边分别为3,1+2a,8,则a的取值范围是()A、6a3B、5a2C、2a5D、a5或a2考点:三角形三边关系
6、;解一元一次不等式组。分析:本题可根据三角形的三边关系列出不等式:831+2a8+3,化简得出a的取值即可解答:解:依题意得:831+2a8+351+2a1142a102a5故选C点评:已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和注意不等式两边都除以一个负数,不等号的方向改变2、在ABC中,若A=54,B=36,则ABC是()A、锐角三角形B、钝角三角形C、直角三角形D、等腰三角形考点:三角形内角和定理。分析:本题考查的是三角形内角和的定义,列出式子解答即可解答:解:A=54,B=36,根据三角形内角和定理C=180(A+B)=90,ABC是直角三角形故选C3、下面各
7、组中的三条线段能组成三角形的是()A、2cm、3cm,5cmB、1cm、6cm、6cmC、2cm、6cm、9cmD、5cm、3cm、10cm考点:三角形三边关系。分析:判断三角形能否构成,关键是看三条线段是否满足:任意两边之和是否大于第三边但通常不需一一验证,其简便方法是将较短两边之和与较长边比较解答:解:A、2+3=5,以2cm、3cm,5cm长的线段首尾相接不能组成一个三角形;B、1+66,以1cm、6cm、6cm长的线段首尾相接能组成一个三角形;C、2+69,以2cm、6cm、9cm长的线段首尾相接不能组成一个三角形;D、3+510,以3cm、5cm,10cm长的线段首尾相接不能组成一个
8、三角形故选B点评:本题主要考查了三角形三边关系定理:三角形任意两边之和大于第三边4、下面命题是真命题的是()A、如果A=B,那么A和B是对顶角B、若直线y=kx+2过二、四象限,则k0C、如果ab=0,那么a=0D、互为补角的两个角的平分线互相垂直考点:一次函数图象与系数的关系;有理数的乘法;余角和补角;对顶角、邻补角;命题与定理。专题:推理填空题。分析:A、根据对顶角的定义进行判断;B、根据一次函数的图象与系数的关系作出判断;C、两个数的积为零,那么它们两个因数中至少一个是零;D、根据邻补角的定义解答解答:解:A、两个对顶角相等,但相等的两个角不一定是对顶角;故本选项错误;B、直线y=kx+
9、2过二、四象限,k0,即k0;故本选项正确;C、如果ab=0,那么a=0,或b=0,或a=b=0;故本选项错误;D、互为邻补角的两个角的角平分线所成角的度数为90;故本选项错误;故选B点评:本题综合考查了一次函数图象与系数的关系、有理数的乘法、余角和补角、对顶角的定义以及命题与定理等知识点都属于基础题注意:直线y=kx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限k0时,直线必经过二、四象限b0时,直线与y轴正半轴相交b=0时,直线过原点;b0时,直线与y轴负半轴相交5、在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()A、19cmB、19cm或14c
10、mC、11cmD、10cm考点:等腰三角形的性质;三角形三边关系。分析:等腰三角形的两腰相等,应讨论当8为腰或3为腰两种情况求解解答:解:当腰长为8cm时,三边长为;8,8,3能构成三角形,故周长为:8+8+3=19cm当腰长为3cm时,三边长为:3,3,8,3+38,不能构成三角形故三角形的周长为19cm故选A点评:本题考查等腰三角形的性质,等腰三角形的两腰相等,以及辆较小边的和大于较大边时才能构成三角形6、一个三角形的两边长分别为3和7,且第三边的边长为整数,这样的三角形的周长的最小值是()A、14B、15C、16D、17考点:三角形三边关系。分析:本题要先确定三角形的第三条边的长度,根据
11、三角形的三边关系的定理可以确定解答:解:设第三边的长为x,则73x7+3,所以4x10又x为整数,所以x可取5,6,7,8,9所以这个三角形的周长的最小值为15故选B点评:考查了三角形的三边关系8、等腰三角形的一个内角是50,则另外两个角的度数分别是()A、65,65B、50,80C、65,65或50,80D、50,50考点:等腰三角形的性质;三角形内角和定理。专题:计算题。分析:本题可根据三角形的内角和定理求解由于50角可能是顶角,也可能是底角,因此要分类讨论解答:解:当50是底角时,顶角为180502=80,当50是顶角时,底角为(18050)2=65故选C点评:本题主要考查了等腰三角形的
12、性质,及三角形内角和定理不变,纵加减9、下列命题中正确的是()A、对顶角一定是相等的B、没有公共点的两条直线是平行的C、相等的两个角是对顶角D、如果|a|=|b|,那么a=b考点:命题与定理。分析:对顶角相等,但相等的角不一定是对顶角;同一个平面内没有公共点的两个直线平行;绝对值相等两个数,可相等或互为相反数解答:解:对顶角相等,但相等的角不一定是对顶角,故A正确C错误同一个平面内没有公共点的两个直线平行,故B错误绝对值相等两个数,可相等或互为相反数,故D错误故选A点评:本题考查那是真命题,关键知道对顶角的概念,平行线的概念和绝对值的概念,然后求出解10、已知三角形的三个外角的度数比为2:3:
13、4,则它的最大内角的度数为()A、90B、110C、100D、120考点:三角形的外角性质。分析:根据三角形的外角和等于360列方程求三个外角的度数,确定最大的内角的度数即可解答:解:设三个外角的度数分别为2k,3k,4k,根据三角形外角和定理,可知2k+3k+4k=360,得k=40,所以最小的外角为2k=80,故最大的内角为18080=100故选C点评:此题考查的是三角形外角和定理及内角与外角的关系,解答此题的关键是根据题意列出方程求解二、填空题(共10小题,每小题2分,满分20分)11、三角形的最小角不大于60度,最大角不小于60度考点:三角形内角和定理。分析:根据“三角形的内角和是18
14、0度”可知三角形的最小角不大于60度,最大角不小于60度解答:解:假设三角形的最小角大于60,那么此三角形的内角和大于180度,与三角形的内角和是180度矛盾;假设三角形的最大角小于60,那么此三角形的内角和小于180度,与三角形的内角和是180度矛盾三角形的最小角不大于60度,最大角不小于60度点评:主要考查了三角形的内角和是180度求角的度数常常要用到“三角形的内角和是180这一隐含的条件12、命题“对顶角相等”的逆命题是相等的角是对顶角,这个逆命题是假命题考点:命题与定理。分析:把一个命题的条件和结论互换就得到它的逆命题解答:解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相
15、等,所以逆命题是:相等的角是对顶角,它是假命题点评:题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题13、如果等腰三角形的一边长是5cm,另一边长是7cm,则这个等腰三角形的周长为17cm或19cm考点:等腰三角形的性质。分析:题目给出等腰三角形有两条边长为5cm和7cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形解答:解:(1)当腰是5cm时,三角形的三边是:5cm,5cm,7cm,能构成三角形,则等腰三角形的周长=5+5
16、+7=17cm;(2)当腰是7cm时,三角形的三边是:5cm,7cm,7cm,能构成三角形,则等腰三角形的周长=5+7+7=19cm因此这个等腰三角形的周长为17或19cm故填17或19cm点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键14、ABC中,A+B=2C,则C=60考点:三角形内角和定理。分析:根据三角形的三个内角和是180,结合已知条件求解解答:解:A+B+C=180,A+B=2C,3C=180,C=60故答案为60点评:此题主要是三角形内角和定理
17、的运用,注意整体代入求解15、如图所示,AOP=BOP=15,PCOA交OB于C,PDOA于D,若PC=4,则PD等于2考点:含30度角的直角三角形;等腰三角形的性质。分析:过点P作PMOB于M,根据平行线的性质可得到BCP的度数,再根据直角三角形的性质可求得PM的长,根据角平分线上的点到角两边的距离相等得到PM=PD,从而求得PD的长解答:解:过点P作PMOB于MPCOACOP=CPO=POD=15BCP=30PM=12PC=2PD=PMPD=2故填2点评:本题考查了等腰三角形的性质及含30角的直角三角形的性质;解决本题的关键就是利用角平分线的性质,把求PD的长的问题进行转化16、如图,AB
18、CD,B=68,E=20,则D的度数为48度考点:三角形的外角性质;平行线的性质。专题:计算题。分析:根据平行线的性质得BFD=B=68,再根据三角形的一个外角等于和它不相邻的两个内角和,得D=BFDE,由此即可求D解答:解:ABCD,B=68,BFD=B=68,而D=BFDE=6820=48故填空答案:48点评:此题主要运用了平行线的性质以及三角形的一个外角等于和它不相邻的两个内角和17、命题“等角的余角相等”写成“如果,那么”的形式如果有两个角相等,那么这两个角的余角相等考点:命题与定理。分析:任何一个命题都可以写成“如果,那么”的形式如果后面是题设,那么后面是结论解答:解:命题“等角的余
19、角相等”的题设是“两个角相等”,结论是“这两个角的余角相等”故命题“等角的余角相等”写成“如果,那么”的形式是:如果有两个角相等,那么这两个角的余角相等点评:此题比较简单,解答此题的关键是找出原命题的题设和结论18、命题“互为相反数的两数的和是0”的逆命题是和是0的两个数互为相反数,它是真命题 (填“真、假”)考点:命题与定理。专题:推理填空题。分析:两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题解答:解:逆命题是和是0的两个数互为相反数;根据相反数的意义,知该逆命题是真命题故答案为:和
20、是0的两个数互为相反数、真点评:本题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,难度适中19、如图,在ABC中,B=70,DE是AC的垂直平分线,且BAD:BAC=1:3,则C的度数是44度考点:线段垂直平分线的性质。分析:由DE垂直平分AC可得DAC=DCA;ADB是ACD的外角,故DAC+DCA=ADB又因为B=70BAD=180BBAD,由此可求得角度数解答:解:设BAD为x,则BAC=3x,DE是AC的垂直平分线,C=DAC=3xx=2x,根据题意得
21、:180(x+70)=2x+2x,解得x=22,C=DAC=222=44故填44点评:本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般考生需要注意的是角的比例关系的设法,应用列方程求解是正确解答本题的关键20、直角三角形的两个锐角的平分线所交成的角的度数是45或135考点:三角形内角和定理。分析:根据直角三角形的两个锐角互余、角平分线的定义求较小的夹角,由邻补角定义即可求得较大夹角的度数解答:解:直角三角形的两个锐角的平分线所交成的锐角是1290=45,则直角三角形的两个锐角的平分线所交成的钝角是18045=135点评:注意两条直线相交所成的角有两个不
22、同度数的角三、解答题(共6小题,满分60分)21、在ABC中,A+B=C,B=2A,(1)求A、B、C的度数;(2)ABC按边分类,属于什么三角形?ABC按角分类,属于什么三角形?考点:三角形内角和定理。分析:(1)根据三角形的内角和定理列方程组,直接求A、B、C的度数即可;(2)根据三角形按边分类属于不等边三角形,由于有一个直角,所以按角分类,属于直角三角形解答:解:(1)根据题意得&A+B=C&B=2A&A+B+C=180解得:A=30,B=60,C=90;(2)ABC按边分类,属于不等边三角形;ABC按角分类,属于直角三角形点评:几何计算题中,如果依据题设和相关的几何图形的性质列出方程(
23、或方程组)求解的方法叫做方程的思想;求角的度数常常要用到“三角形的内角和是180这一隐含的条件22、如图,说明A+B+C+D+E=180的理由考点:三角形内角和定理。分析:如下图,把图中A+B+C+D+E,5个角的和转化为一个ABC的内角和即可证明解答:解:连接BC,D+E=EBC+DCB,A+ABE+BCD+D+E=A+ABE+EBC+BCD+DCA=180点评:灵活运用三角形的内角和为180是解决此类问题的关键23、已知等腰三角形的两边分别为3和6(1)求这个三角形的周长;(2)若(1)中等腰三角形的顶角的外角平分线所在的直线与底角的外角平分线所在的直线交于P点,探索锐角P与原等腰三角形顶
24、角的关系考点:等腰三角形的性质;三角形三边关系。专题:应用题。分析:(1)分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可,(2)根据等腰三角形的性质和角平分线的性质求得ABC=PAB,从而得出APCB,同理PFAC,根据平行四边形的性质即可得出答案解答:解:(1)当3为底时,三角形的三边长为3,6,6,则周长为15,当3为腰时,三角形的三边长为3,3,6,则不能组成三角形,故周长为15,(2)相等,BAC+2ABC=180,DBF=PBA=12(180ABC),PAB=12(180BAC),(2)P=9012A,AB=AC,AP为EAB的角平分
25、线,B=C,EAP=PAB,B+C+BAC=180,EAP+PAB+BAC=180,B+C=EAP+PAB,B=DAB,APCB,同理PFAC,四边形APBC为平行四边形,P=C=12(180A)=9012A点评:本题考查了等腰三角形的性质、三角形的三边关系定理以及平行四边形的性质,难度适中24、如图,在ABC中(1)如果AB=7cm,AC=5cm,BC是能被3整除的的偶数,求这个三角形的周长(2)如果BP、CP分别是ABC和ACB的角平分线a、当A=50时,求BPC的度数b、当A=n时,求BPC的度数考点:三角形内角和定理;三角形三边关系。专题:图表型;数形结合。分析:(1)根据三角形的三边关系求得第三边的取值范围,再进一步结合已知BC是能被3整除的的偶数和已知的两条边,求得第三边的值,即可解答;(2)延长CP交AB于点E,延长BP交AC于点D在ABC中,根据角平分线的定义及三角形内角和定理,先求得ABD+ACE的值,从而求得CBD+ECB的值;然后在BPC中利用三角形内角和定理求得BPC度数解答:解:(1)根据三角形的三边关系,得2BC12,又BC是能被3整除的的偶数,则BC=6cm这个三角形的周长=6+7+5=18cm(2)a:延长CP交AB于点E,延长BP交AC于点DBP、CP分别是ABC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 粉扑收纳架市场发展前景分析及供需格局研究预测报告
- 口琴产业链招商引资的调研报告
- 天然气输送结构的建造行业相关项目经营管理报告
- 剪贴集产品供应链分析
- 大学或学院教育行业市场调研分析报告
- 宝石分级行业营销策略方案
- 厕所除臭剂产品供应链分析
- 石油专用泥浆泵项目运营指导方案
- 缝纫用剪刀项目运营指导方案
- 电动轨道照明设备项目运营指导方案
- 心肌炎护理查房课件
- 广告图像数码喷印材料市场
- 2024年安徽芜湖事业单位联考高频难、易错点500题模拟试题附带答案详解
- 2024年秋季新人教版7年级上册生物课件 第2单元 第1章大单元整体设计
- 炸药及火工品生产过程中的安全防护技术考核试卷
- DBJ04∕T 292-2023 住宅物业服务标准
- 副总经理招聘笔试题及解答(某大型国企)
- 2024年工业和信息化部应急通信保障中心招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 教育部《中小学德育工作指南》-道德修养手册
- 主题人像摄影智慧树知到答案2024年四川工商职业技术学院
- 餐饮服务食品安全规范2024
评论
0/150
提交评论