版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1,1,过程控制系统及仪表,2,3,4-1 基本控制规律,过程控制系统的质量,取决于被控对象的特性和控制器的特性。 控制器的特性,就是指控制器的输出信号随着输入信号变化的规律,又称作控制律,e,u,y,r,4,在过程控制中,控制器的输入定义为被控变量的测量值 y与给定值 r 的偏差 e : e = y-r 控制器的输出就是控制器送往执行器的控制信号u,所以控制器中的控制规律可以用下面的数学关系表示: u = f (e,e0,并且在控制律作用下u0,称为正作用控制器; e0,并且在控制律作用下u0,称为反作用控制器,5,基本控制规律,最简单的控制律:位式控制 PID控制律:比例控制(P),积分控
2、制(I),微分控制(D),以及PID组合,6,一、位式控制,位式控制规律可分为双位控制和多位控制。 双位控制的特性可以用下面的数学表达式来描述,7,例:储槽液位控制 槽内装有电极,作为液位的测量装置。电极的一端与继电器的线圈 J 相接;另一端正好处于液位给定值的位置。 导电流体经装有电磁阀 V的管线进入贮槽,再由出料管流出,8,双位控制律: 当液位低于给定,电极与流体不接触,继电器J断开,电磁阀V全开,流体流入贮槽,H上升。 当液体高于给定,电极与流体接触,继电器J接通,电磁阀V全关,流体不再进入贮槽,H下降。 如此反复循环,9,双位控制律缺点: 执行部件的动作非常频繁,这样使系统中的运动部件
3、(继电器、电磁阀)易于损坏,降低了控制系统的可靠性。 改进双位控制律:具有中间区的双位控制,10,具有中间区的双位控制器 其特性可表示为,注意:被控变量有两个给定值,11,具有中间区的双位控制特性如图 4-3 所示,12,例:储槽液位具有中间区的双位控制律: 当液体高于给定yH ,上磁浮子闭合,继电器J接通,电磁阀V全关,流体不再进入贮槽,H下降。但是注意:当液位低于yH,电磁阀V继续全关。 当液位低于给定yL,下磁浮子闭合,继电器J断开,电磁阀V全开,流体流入贮槽,H上升。但是注意:当液位高于yL,电磁阀V继续全开。 如此反复循环,yH,yL,位式磁浮子液位传感器,13,具有中间区的双位控制
4、曲线如下图所示,阀关,阀开,14,双位控制优点: 结构简单,成本较低,且易于实现,适用于某些对控制质量要求不高的应用场合。 如:空气压缩机贮罐的压力控制、恒温箱、电烘箱的温度控制等。 缺点: 被控变量总是处在震荡过程,控制质量低,15,二、比例控制,1. 比例控制规律 比例控制规律是指控制器的输出变化量与输入偏差成比例关系,一般用字母 P 表示。 比例控制规律的数学表达式为: u = KP e 式中 u 控制器的输出变化量; e 控制器的输入,即被控变量测量 值与控制器的给定值之差; KP 比例控制的放大倍数,又称为比 例增益,16,比例控制规律的开环阶跃响应特性如图,显然,在输入偏差相同的情
5、况下,KP越大,控制器的输出变化量也越大,控制作用就越强,17,在过程控制中习惯于采用比例度(也称比例带)来衡量比例控制作用的强弱。 比例度的定义可以用下式来表示,18,比例度就是指控制器的输入相对变化量与对应的输出相对变化量的百分比。 物理意义,代表使控制器的输出全范围变化时,所需要的被控变量的变化范围。只有当被控变量在这一范围内变化时,控制器的输出才与偏差成比例,如果超出了“比列带”,控制器的输出将暂时失去比例控制作用,19,例:在一个电动比例控制器构成的温度控制系统中,被控变量检测仪表的量程范围为:200-300,控制器的输出范围为0-10mA,当温度从250 变化到270 ,相应的控制
6、器输出信号从4mA变化到9mA,控制器的比例度,比例度40%说明:只要温度变化40%(40 ),就可以使控制器的输出信号从0mA变化到10mA,20,在用单元组合仪表构成的控制系统中,由于变送器和控制器都是采用统一的标准信号:4-20mA,1-5V,这说明两者互为例数关系,即越小,KP越大,比例控制作用越强;越大,KP越小,比例控制作用越弱,比例度和放大倍数 KP的关系可进一步简化为,21,2比例控制的特点,显著特点:有差控制,只有当偏差出现,才产生控制动作,偏差越大,控制器输出变化也越大。 快速及时。 缺点:有余差。 比例控制系统适用于干扰较小、不频繁,对象滞后较小而时间常数较大,控制精确度
7、要求不高的场合,22,例:水加热器温度控制系统,曲线3:Q1 Q0Q1,设定值,阀门开度,曲线2:流量为Q0,阀开度变化对应温度变化,温度,O点至B点至A点,有余差,23,3 比例度对控制过程的影响,比例度影响可从静态和动态两个方面考虑: 比例度对系统静态特性的影响是:比例度越大(即放大倍数 KP越小),控制过程达到稳态时的余差就越大。 对动态特性的影响:减小比例度虽然有利于减小系统达到新稳态时的余差,但却影响到系统的动态特性,使控制系统的稳定性下降,24,对动态特性的影响: 可由图所示的在干扰作用下的闭环响应曲线来描述,25,三、比例积分控制,1积分控制规律及其特点 积分控制规律是指控制器的
8、输出变化量与输入偏差的积分成比例关系,一般用字母 I 表示。 积分控制规律的数学表达式为,式中 Ti 积分时间常数,是一个可调的常数,26,积分控制作用的特性可用在阶跃输入作用下的输出响应曲线来说明。 当控制器输入偏差 e 为常数 A 时,27,积分控制规律的特点,积分作用能够消除余差,这是积分控制规律最显著的特点,也是它的突出优点; 主要缺点:不能及时克服干扰,会使控制系统的稳定性下降; 积分控制规律一般不单独使用,28,2比例积分控制规律,比例积分控制规律是由比例控制规律和积分控制规律结合而成,一般用字母 Pl 表示。 比例积分控制规律的数学表达式为: PI 控制规律结合了比例控制与积分控
9、制的优点,既能快速克服干扰,又能消除系统的余差,29,当输入偏差是一幅值为 A 的阶跃变化时,比例积分控制器的输出变化特性曲线如图 4-10 所示,30,3积分时间对过渡过程的影响,比例积分(PI)控制器,比例度(或比例增益 KP)和积分时间 Ti 都是可调参数。 讨论:积分时间 T i过大和过小对控制效果的影响,31,积分时间过大,积分作用太弱,消除余差的过程很慢(见曲线 b ) ; 只有当 T i适当时,过渡过程能较快地衰减,而且没有余差(见曲线c); 积分时间太小,控制器的输出变化太快,使过渡过程振荡太剧烈,系统的稳定性大大下降(见曲线 d ),P型控制器,32,四、比例微分控制 1微分
10、控制规律及其特点 微分控制规律是指控制器的输出变化量与输入偏差的变化速度成比例,一般用字母 D 表示。 微分控制规律的数学表达式为,33,当输入偏差信号为幅值 A 的阶跃变化时,微分控制特性响应曲线如图所示,34,实际上的工业控制器采用的都是采用一种近似的微分作用,它在阶跃输入作用下的开环响应特性如图所示。 在阶跃输入的瞬间,输出突然升到一个较大的值,然后按指数规律衰减至零。 变化特性可用下面的数学表达式描述,35,微分控制规律的特点,微分作用是依据偏差的变化速度来进行控制,偏差变化速度越大,控制器输出越大。对固定不变的偏差,控制器输出为零。 由于微分作用总是力图抑制被控变量的变化,所以它有提
11、高控制系统稳定性的作用。 不能消除余差。 微分控制规律一般不单独使用,36,2比例微分控制规律,理想的比例微分控制规律,可以用下式表示,当输入偏差信号为幅值A 的阶跃变化时,实际比例微分控制开环输出响应特性如图所示,37,五、比例积分微分控制 比例积分微分控制规律是由比例、积分和微分三种控制作用组合而成,一般用字母 PID 表示。 理想的比例积分微分控制规律的数学表达式为,38,P,I,D,39,PID控制特点: 比例积分微分控制是由三种作用的输出特性叠加而成。 由于在 PID 控制器中,比例度、积分时间 Ti ,和微分时间 TD 三个参数都是可调的,所以,只要这三个参数选择的合适,就可以获得
12、良好的控制质量。 PID控制选用通用的控制器,可实现三作用控制规律。 若将微分时间调至零,就成一台比例积分控制器; 若将积分时间调至最大,就成一台比例微分控制器; 若将微分时间至零,积分时间至无穷大,就是一台比例控制器,40,控制仪表,DDZ-型调节器,KMM可编程调节器,41,一、主要功能 接收信号:1-5V DC信号。 实现偏差检测:将接收信号与给定值信号进行比较,得到偏差信号。 PID计算:将偏差信号进行PID运算,产生相应的4-20mA控制信号。 具备相应值的指示功能,4-2 DDZ-型调节器,42,二、构成原理,由两大部分构成,43,控制单元:由自动操作和手动操作组成,44,控制单元
13、的内外给定值功能,45,控制器的正反作用功能,46,47,一、构成,4-3 KMM可编程调节器,硬件部分: 主机部分 模拟量输入-输出通道 数字量输入-输出通道 通信接口 正面板,侧面板 软件部分: 系统程序和用户程序,48,49,KMM正面板上控制方式选择: 手动方式(M) 自动方式(A) 串级方式(C,50,51,课程小结,过程控制仪表: 了解位式控制规律。 掌握PID三种基本控制规律、特点。 掌握理想PID控制器的控制算式,KP、TI、TD与控制输出的关系。 掌握DDZ-III调节器的特点及主要功能。 了解KMM可编程调节器特点,52,电信学院自动化系先进控制技术研究所,Thank Yo
14、u,53,学习幻灯,54,内容简介 过程控制系统及仪表(第3版)内容简介:过程控制系统的理论分析和设计需要较多的数学知识,自动化仪表在设计制造方面也有许多技术问题值得探讨。但是,对于工艺技术人员来说,主要关心的问题是控制系统和仪表的基本原理及其应用特性。因此,过程控制系统及仪表(第3版)尽量避免繁杂的数学推导,力求用简明扼要的文字和插图使读者对所学知识有更多的定性了解,通俗易懂,这是过程控制系统及仪表(第3版)的另一个特色。过程控制系统和仪表涉及的领域十分广阔,研究内容也极其丰富。本着理论联系实际、学以致用的原则,过程控制系统及仪表(第3版)在取材方面,不追求包罗万象、面面俱到,而是力争把最基
15、本、最常用的内容都包含进来。突出重点,注重实用是过程控制系统及仪表(第3版)的第三个特色,第3版 2010-07,第2版 出版日期:2006-08-01,54,55,目录 第1篇 过程控制基础知识第1章 绪论1.1 生产过程自动化概述1.1.1 生产过程及其特点1.1.2 生产过程对控制的要求1.1.3 生产过程自动化的发展历程1.2 过程控制系统的组成及分类1.2.1 过程控制系统的组成1.2.2 过程控制系统的分类1.3 过程控制系统的方块图与工艺控制流程图1.3.1 过程控制系统的方块图1.3.2 过程控制系统的工艺控制流程图1.4 过程控制系统的过渡过程和性能指标1.4.1 过程控制系
16、统的过渡过程1.4.2 过程控制系统的性能指标习题第2章 被控对象的特性2.1 概述2.1.1 基本概念2.1.2 被控对象的阶跃响应特性2.2 被控对象特性的数学描述2.2.1 一阶对象的机理建模及特性分析2.2.2 二阶对象的机理建模及特性分析2.2.3 纯滞后对象的机理建模及特性分析2.3 被控对象的实验测试建模2.3.1 阶跃响应曲线的获取2.3.2 一阶纯滞后对象特性参数的确定2.3.3 二阶对象特性参数的确定习题,第2篇 过程自动化装置第3章 过程测量仪表 3.1 测量仪表中的基本概念3.1.1 测量过程及测量仪表3.1.2 检测系统的基本特性及性能指标 3.2 温度测量3.2.1
17、 概述3.2.2 热电偶温度计3.2.3 热电阻温度计3.2.4 温度测量仪表的选用3.2.5 温度交迭器3.2.6 一体化温度变送器3.2.7 智能温度变送器 3.3 压力测量3.3.1 概述3.3.2 弹性式压力表3.3.3 电容武压力变送器3.3.4 扩散硅压力变送器3.3.5 智能差压变送器3.3.6 压力表的选择和使用 3.4 流量测量3.4.1 概述3.4.2 差压式流量计3.4.3 容积式流量计3.4.4 浮子式流量计3.4.5 电磁流量计3.4.6 涡街流量计,55,56,3.5 物位测量3.5.1 概述3.5.2 静压式液位计3.5.3 磁浮子式液位计3.5.4 电容武物位计
18、3.5.5 其他物位测量仪表 3.6 显示仪表3.6.1 概述3.6.2 模拟式显示仪表3.6.3 数字式显示仪表3.6.4 智能化、数字化记录仪习题 第4章 过程控制仪表4.1 基本控制规律4.1.1 位式控制4.1.2 比例控制4.1.3 比例积分控制4.1.4 比例微分控制4.1.5 比例积分微分控制4.2 DDZ一型调节器4.2.1 主要功能4.2.2 构成原理4.3 可编程调节器4.3.1 KMM可编程调节器的构成4.3.2 KMM可编程调节器的主要功能4.3.3 正面板和侧面板,4.4 可编程控制器4.4.1 可编程控制器的产生与发展4.4.2 可编程控制器的应用场合4.4.3 可
19、编程控制器的构成、分类及工作过程4.4.4 可编程控制器的编程语言4.4.5 可编程控制器选型基本原则4.4.6 松下FPI可编程控制器习题第5章 过程执行仪表5.1 概述5.2 执行机构5.2.1 气动执行机构5.2.2 电动执行机构5.3 调节机构5.3.1 常用调节机构及特点5.3.2 流量系数与可调比5.3.3 流量特性5.4 电一气转换器和阀门定位器5.4.1 电一气转换器5.4.2 阀门定位器的主要用途5.4.3 电一气阀门定位器习题,56,57,第3篇 垃程控制系统 第6章 简单控制系统6.1 概述6.2 被控变量的选择6.3 操纵变量的选择6.3.1 对象静态特性对控制质量的影
20、响6.3.2 对象动态特性对控制质量的影响6.3.3 选择操纵变量的原则6.4 控制系统中盼测量变送问题6.4.1 测量变送问题对控制质量的影响6.4.2 克服测量变送问题的措施6.5 执行器的选择6.5.1 阀流量特性的选择6.5.2 执行器开闭形式的选择6.6 控制器的选择6.6.1 控制规律的选择6.6.2 控制器正反作用的确定6.7 控制系统的投运及控制器参数的整定6.7.1 控制系统的投运6.7.2 控制器参数的整定习题第7章 复杂控制系统7.1 串级控制系统7.1.1 串级控制系统的结构7.1.2 串级控制系统的工作过程7.1.3 串级控制系统的特点及应用场合7.1.4 串级控制系
21、统设计中的几个问题7.1.5 串级控制系统的整定,7.2 比值控制系统7.2.1 概述7.2.2 比值控制系统的类型7.3 前馈控制系统7.3.1 概述7.3.2 前馈控制系统的结构形式7.3.3 前馈控制系统的应用7.4 均匀控制系统7.4.1 均匀控制问题的提出7.4.2 均匀控制的特点7.4.3 均匀控制系统的结构形式7.5 分程控制系统7.5.1 基本概念7.5.2 分程控制系统的应用场合7.6 选择性控制系统7.6.1 基本概念7.6.2 选择性控制系统的实例分析7.7 多冲量控制系统习题第8章 先进过程控制系统介绍8.1 软测量技术8.1.1 辅助变量的选择8.1.2 数据采集与处理8.1.3 软测量模型的建立8.1.4 模型校正8.2 时滞补偿控制8.2.1 Smith预估补偿控制8.2.2 控制实施中的若干问题,57,58,8.3 解耦控制8.3.1 耦合现象的影响及分析8.3.2 解耦控制8.4 预测控制8.4.1 预测控制的基本原理8.4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁石化职业技术学院《审计流程实验》2023-2024学年第一学期期末试卷
- 昆明幼儿师范高等专科学校《社会科学名著》2023-2024学年第一学期期末试卷
- 江西传媒职业学院《机械制造技术基础实验》2023-2024学年第一学期期末试卷
- 吉林师范大学博达学院《课外读写实践》2023-2024学年第一学期期末试卷
- 湖南商务职业技术学院《电子线路CAD设计》2023-2024学年第一学期期末试卷
- 湖南财政经济学院《中国民族民间舞(一)》2023-2024学年第一学期期末试卷
- 黑龙江三江美术职业学院《中文工具书》2023-2024学年第一学期期末试卷
- 重庆工业职业技术学院《经济地理学》2023-2024学年第一学期期末试卷
- 浙江科技学院《材料综合实验》2023-2024学年第一学期期末试卷
- 年产2万吨盐酸二甲双胍原料药项目可行性研究报告模板-立项备案
- 病例报告表(CRF)模板
- 2024年重庆市中考数学试卷(AB合卷)【附答案】
- 2024届高考语文作文备考:立足材料打造分论点 教学设计
- 幼儿园大班数学练习题100道及答案解析
- 对讲机外壳注射模设计 模具设计及制作专业
- 2024年四川省德阳市中考道德与法治试卷(含答案逐题解析)
- 施工现场水电费协议
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
评论
0/150
提交评论