版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、内江市2015年中考数学试卷A卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)19的算术平方根是()A3B3C3D2用科学记数法表示0.0000061,结果是()A6.1105B6.1106C0.61105D611073如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()ABCD4有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A10BCD25函数y=+中自变量x的取值范围是()Ax2Bx2且x1Cx2且x1Dx16某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时
2、,是黄灯的概率为()ABCD7下列运算中,正确的是()Aa2+a3=a5Ba3a4=a12Ca6a3=a2D4aa=3a8如图,在ABC中,AB=AC,BD平分ABC交AC于点D,AEBD交CB的延长线于点E若E=35,则BAC的度数为()A40B45C60D709植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵设男生有x人,女生有y人,根据题意,下列方程组正确的是()ABCD10如图,在O的内接四边形ABCD中,AB是直径,BCD=120,过D点的切线PD与直线AB交于点P,则ADP的度数为()A40B35C30D4511如图,正方形ABCD的面积为12,ABE
3、是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()AB2C2D12如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A1k9B2k34C1k16D4k16二、填空题(本大题共4小题,每小题5分,共20分)13分解因式:2x2y8y= 14如图,在四边形ABCD中,ADBC,C=90,E为CD上一点,分别以EA,EB为折痕将两个角(D,C)向内折叠,点C,D恰好落在AB边的点F处若AD=2,BC=3,则EF的长为 15已知
4、关于x的方程x26x+k=0的两根分别是x1,x2,且满足+=3,则k的值是 16如图是由火柴棒搭成的几何图案,则第n个图案中有 根火柴棒(用含n的代数式表示)三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推算步骤)17(7分)计算:|2|(2015)0+()22sin60+18(9分)如图,将ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O(1)求证:ABDBEC;(2)连接BD,若BOD=2A,求证:四边形BECD是矩形19(9分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随
5、机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组8510;第二组100115;第三组115130;第四组130145;第五组145160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100130分评为“C”,130145分评为“B”,145160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成
6、绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率20(9分)我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45方向、N地北偏西60方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:1.41,1.73)21(10分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等(1)求每台电冰箱与空
7、调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;(3)实际进货时,厂家对电冰箱出厂价下调k(0k100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案B卷四、填空题(本大题共4小题,每小题6分,共24分)22在ABC中,B=30,AB=12,AC=6,则BC= 23在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(
8、b为常数且b2)的垂线,垂足为点Q,则tanOPQ=24如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面四个结论:CHBE;HOBG;S正方形ABCD:S正方形ECGF=1:;EM:MG=1:(1+),其中正确结论的序号为 25已知实数a,b满足:a2+1=,b2+1=,则2015|ab|=五、解答题(本大题共3小题,每小题12分,共36分,解答时应写出必要的文字说明或演算步骤)26(12分)(1)填空:(ab)(a+b)= ;(ab)(a2+ab+b2)= ;(ab)(a3+a2b+a
9、b2+b3)= (2)猜想:(ab)(an1+an2b+abn2+bn1)= (其中n为正整数,且n2)(3)利用(2)猜想的结论计算:2928+27+2322+227(12分)如图,在ACE中,CA=CE,CAE=30,O经过点C,且圆的直径AB在线段AE上(1)试说明CE是O的切线;(2)若ACE中AE边上的高为h,试用含h的代数式表示O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求O的直径AB的长28(12分)如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC(1)求抛物线的函数关系式;(2)点N为抛
10、物线上的一个动点,过点N作NPx轴于点P,设点N的横坐标为t(t2),求ABN的面积S与t的函数关系式;(3)若t2且t0时OPNCOB,求点N的坐标内江市2015年中考数学试卷答案A卷选择题1.C 2.B 3.C 4.D 5.B 6.A 7.D 8.A 9.D 10.C 11.B 12.C 填空题13.2y(x+2)(x2) 14. 15.2 16.2n(n+1)解答题17.解答:解:|2|(2015)0+()22sin60+=21+2+2=3+18.解答:证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,ABCD,则BECD又AB=BE,BE=DC,四边形BECD为平行四边形,B
11、D=EC在ABD与BEC中,ABDBEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB四边形ABCD为平行四边形,A=BCD,即A=OCD又BOD=2A,BOD=OCD+ODC,OCD=ODC,OC=OD,OC+OB=OD+OE,即BC=ED,平行四边形BECD为矩形19.解答:解:(1)根据题意得:本次调查共随机抽取了该年级学生数为:2040%=50(名);则第五组人数为:50482014=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有:1500=420(名);(3)画树状图得:共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生
12、的有10种情况,所选两名学生刚好是一名女生和一名男生的概率为:=20.解答:解:过点P作PDMN于DMD=PDcot45=PD,ND=PDcot30=PD,MD+ND=MN=2,即PD+PD=2,PD=11.731=0.730.6答:修的公路不会穿越住宅小区,故该小区居民不需搬迁21.解答:解:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据题意得:,解得:x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元(2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(
13、21002000)x+(17501600)(100x)=50x+15000,根据题意得:,解得:,x为正整数,x=34,35,36,37,38,39,40,合理的方案共有7种,即电冰箱34台,空调66台;电冰箱35台,空调65台;电冰箱36台,空调64台;电冰箱37台,空调63台;电冰箱38台,空调62台;电冰箱39台,空调61台;电冰箱40台,空调60台;y=50x+15000,k=500,y随x的增大而减小,当x=34时,y有最大值,最大值为:5034+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元(3)当厂家对电冰箱出厂价下调k(0k10
14、0)元,若商店保持这两种家电的售价不变,则利润y=(21002000+k)x+(17501600)(100x)=(k50)x+15000,当k500,即50k100时,y随x的增大而增大,当x=40时,这100台家电销售总利润最大,即购进电冰箱40台,空调60台;当k500,即0k50时,y随x的增大而减小,当x=34时,这100台家电销售总利润最大,即购进电冰箱34台,空调66台;答:当50k100时,购进电冰箱40台,空调60台销售总利润最大;当0k50时,购进电冰箱34台,空调66台销售总利润最大 B卷填空题22.6 23.24. 25.1解答题26.解答:解:(1)(ab)(a+b)=
15、a2b2;(ab)(a2+ab+b2)=a3+a2b+ab2a2bab2b3=a3b3;(ab)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3a3ba2b2ab3b4=a4b4;故答案为:a2b2,a3b3,a4b4;(2)由(1)的规律可得:原式=anbn,故答案为:anbn;(3)2928+27+2322+2=(21)(28+26+24+22+2)=34227.解答:解:(1)连接OC,如图1,CA=CE,CAE=30,E=CAE=30,COE=2A=60,OCE=90,CE是O的切线;(2)过点C作CHAB于H,连接OC,如图2,由题可得CH=h在RtOHC中,CH=OC
16、sinCOH,h=OCsin60=OC,OC=h,AB=2OC=h;(3)作OF平分AOC,交O于F,连接AF、CF、DF,如图3,则AOF=COF=AOC=(18060)=60OA=OF=OC,AOF、COF是等边三角形,AF=AO=OC=FC,四边形AOCF是菱形,根据对称性可得DF=DO过点D作DHOC于H,OA=OC,OCA=OAC=30,DH=DCsinDCH=DCsin30=DC,CD+OD=DH+FD根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即CD+OD)最小,此时FH=OFsinFOH=OF=6,则OF=4,AB=2OF=8当CD+OD的最小值为6时,O的直径AB的长为828.解答:解:(1)设抛物线的解析式为y=ax2+bx+c,由题可得:,解得:,抛物线的函数关系式为y=x2+x+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建师范大学《书法基础》2021-2022学年第一学期期末试卷
- 福建师范大学《回归分析》2023-2024学年第一学期期末试卷
- 第二章 统计调查与整 理课件
- 第8章 广告管理课件
- 创意美术活动展报道稿
- 2024年宜昌旅客运输从业资格证考试题库
- 2024年阿坝客运从业资格证考试技巧
- 2024年海南客运从业资格证模拟考试试题及答案
- 2024年杭州驾驶员客运从业资格证模拟考试题
- 2024年合肥客运驾驶员试题答案
- 学生视力情况统计表
- 幼儿园故事《我想帮忙》
- 公共租赁住房申请表
- 生产计划及进度统计表
- 广东省深圳市福田区2023-2024学年三年级上学期11月期中科学试题
- Python爬取企业财务报表
- 小学四年级心理健康课《化解冲突有办法》教学课件
- 医院感染十八项核心制度
- 新课标视域下的图形与几何教学
- 六氟化硫断路器试验报告
- 98S205 消防增压稳压设备选用与安装(隔膜式气压罐)
评论
0/150
提交评论