车辆主动悬架最优控制_第1页
车辆主动悬架最优控制_第2页
车辆主动悬架最优控制_第3页
车辆主动悬架最优控制_第4页
车辆主动悬架最优控制_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.车辆主动悬架的控制研究悬架是汽车的重要装置之一,它对汽车的平顺性、操纵稳定性、通过性等多种使用性能有着很大的影响。设计优良的悬架系统,对提高汽车产品质量有着极其重要的意义。目前,汽车上普遍采用的是弹性元件和减震器组成的常规悬架,从控制力学的角度,将这种悬架称为被动悬架。实践和研究结果都表明,常规悬架受到许多限制,即使采用优化方法来设计也只是将其性能改善到一定程度。为了克服常规悬架对其性能改善的限制,在汽车中采用和发展了新型的主动悬架。主动悬架能够根据路面情况及汽车运行的实际状态进行最优反馈控制,使汽车整体行驶性能达到最佳。主动悬架的主要特点是能够主动提供能量,与传统被动悬架相比,其最大的优点

2、在于具有高度的自适应性。一、 车辆主动悬架系统建模 主动悬架的分析模型如图3.3所示,图中u为主动悬架执行机构的作用力。 主动悬架的运动微分方程为: (1)状态变量、输出向量的选取同被动悬架,且为了便于与被动悬架的比较分析,选取与被动悬架模型相同的输入信号,路面激励仍为选白噪声,根据微分方程组(1),建立如下所示的状态方程和输出方程 (2) 式中: ; 汽车悬架可认为是一种连续线性的随机最优控制系统,由最优线性滤波器串接确定性调节器的最优反馈增益系数矩阵组成。这两部分参数可分别加以确定。对于控制要求的性能指标是二次函数积分型的调节器问题,外界干扰是高斯白噪声,综合性能指标为: (3) 此处认为

3、汽车主动悬架的最优控制器为一个终端时间无限的线性调节器,问题仍是寻找最优控制,使目标函数J取极小。线性调节器的主要问题之一是如何选择Q、R阵以获得比较满意的控制过程动态响应,计算机仿真可以解决这个问题。 在悬架设计中,为提高汽车的操纵稳定性和行驶平顺性,应使簧载质量垂直加速度、悬架动扰度及轮胎动变形较小。此外,从实现控制的角度来看,应使所需的控制能量较小。因此式(3)可写为 (4)或写为 (5)其中 这里,q1轮胎动变形加权系数 q2悬架动扰度加权系数式(3.9)中第一、二项为误差指标,表示在整个时间内系统实际状态与平衡之间的误差总和。这一积分越小,说明控制误差越小,性能越好。积分式中第三项为

4、能量指标,表示在整个时间内支付能量的总和。系统状态转移是考控制u(t)来进行的,为要使系统误差很小,则需要支付很大的能量代价。最优反馈增益系数矩阵式可写成 (6)式中,增益值k1k4有明确的物理意义。k1可等效于一放置于簧载和非簧载质量间的弹簧,改变k1则影响簧载质量的固有频率;k2作用于簧载质量的绝对速度上,影响其悬挂阻尼;k3大小涉及轮胎变形,对车轮的垂直弹跳频率产生影响;k4作用于非簧载质量的速度上,影响其非悬挂阻尼。二、 主动悬架系统的能控性,能观测性 能控性和能观测性是系统的一种特性,是现代控制理论中的两个基本概念。 状态完全能控的充分必要条件是能控矩阵满秩; 状态完全能观测的充分必

5、要条件是能观测矩阵满秩。 主动悬架系统参数的选取如下,即m1=36kg;m2=240kg;kt=160000N/m; 将参数值带入矩阵,利用Matlab中的函数Coctrb(A,B)求悬架系统的能控矩阵Co,利用函数rA=rank(Co)得矩阵的秩为rA=4,满秩,故系统是能控的。 利用Matlab中的函数Obobsv(A,C)求悬架系统的能观测矩阵Ob,利用函数rBrank(Ob)得矩阵的秩为rB=4,满秩,故系统是能观测的。三、 主动悬架的频域仿真 为了求得主动悬架系统的最优控制u(t),必须先求得反馈增益矩阵K,而K矩阵的求解决定于黎卡提代数方程的解P矩阵,这可以用计算机来实现求解。 程

6、序用Matlab语言编写,给定一组矩阵A、B、Q、R的有关数据,经过计算,便可以最终得到相应的矩阵P、K的数值。下面取三组不同权系数q1,q2进行计算分析;1) 取q1=3.35E5,q2=40.5E5时,由程序得k1=2012.5,k2=977.1,k3=1874.8,k4=31.3,并求得系统的传递函数及幅频特性,绘制系统的幅频特性图%主动悬架q1=3.35e5;q2=40.5e5时的仿真程序:m1=36;m2=240;kt=160000;q1=3.35e5;q2=40.5e5;A=0 1 0 -1;0 0 0 0;0 0 0 -1;0 0 kt/m1 0;B=0;1/m2;0;-1/m1

7、;D=0;0;1;0;C=0 0 0 0;1 0 0 0;0 0 1 0;E=1/m2;0;0;H=0;0;0;Q=q2 0 0 0;0 0 0 0;0 0 q1 0;0 0 0 0;R=1;K,P,F=lqr(A,B,Q,R)M=A-B*K;N=C-E*K;G=ss(M,D,N,H);G1=tf(G)i=1;for s=0:0.1:80 s=s*2*pi*j;G11=(7.811 *s3 + 580.4 *s2 + 3.727e004 *s + 1.422e-010)/(s4 + 4.942 *s3 + 4457 *s2 + 1.809e004 *s + 3.727e004);G12=(-4

8、385 *s - 1.751e004)/(s4 + 4.942 *s3 + 4457 *s2 + 1.809e004 *s + 3.727e004);G13=(s3 + 4.942 *s2 + 64.29 *s - 2.145e-013)/(s4 + 4.942 *s3 + 4457 *s2 + 1.809e004 *s + 3.727e004);f(i)=abs(G11);h(i)=abs(G12);g(i)=abs(G13); i=i+1;ends=0:0.1:80;figureloglog(s,f,-,s,h,-.,s,g,:)legend(加速度,动扰度,动载荷) 图1. q13.35

9、E5,q240.5E5的幅频特性图由图1可以看出主动悬架的车身加速度、悬架动扰度、轮胎动载荷幅频特性图同被动悬架相似,同样具有双峰,不同的是在低频固有频率附近,主动悬架的响应幅值明显减小,且变化平缓,主动悬架的减振性能较为突出;在高频固有频率附近,主动悬架的响应幅值变化较大。可知取该组权系数时,主动悬架的减振性能的改善程度不够理想;2) 取q13.35E8,q240.5E8时,由程序得k1=63640;k2=4863;k3=36146;k4904;及系统的传递函数和幅频特性,绘制幅频特性图%主动悬架q1=3.35e8;q2=40.5e8时的仿真程序:m1=36;m2=240;kt=160000

10、;q1=3.35e8;q2=40.5e8;A=0 1 0 -1;0 0 0 0;0 0 0 -1;0 0 kt/m1 0;B=0;1/m2;0;-1/m1;D=0;0;1;0;C=0 0 0 0;1 0 0 0;0 0 1 0;E=1/m2;0;0;H=0;0;0;Q=q2 0 0 0;0 0 0 0;0 0 q1 0;0 0 0 0;R=1;K,P,F=lqr(A,B,Q,R)M=A-B*K;N=C-E*K;G=ss(M,D,N,H);G1=tf(G)i=1;for s=0:0.1:80 s=s*2*pi*j; G11=(150.6*s3 + 1.673e004*s2 + 1.179e006

11、*s + 1.653e-008)/(s4 + 45.36*s3 + 5473*s2 + 9.005e004*s + 1.179e006); G12=(-3290*s - 7.332e004)/(s4 + 45.36*s3 + 5473*s2 + 9.005e004*s + 1.179e006); G13=(s3 + 45.36*s2 + 2033*s + 5.386e-012)/(s4 + 45.36*s3 + 5473*s2 + 9.005e004*s + 1.179e006); f(i)=abs(G11);h(i)=abs(G12);g(i)=abs(G13); i=i+1;ends=0:

12、0.1:80;figureloglog(s,f,-,s,h,-.,s,g,:)legend(加速度,动扰度,动载荷) 图2. q13.35E8,q240.5E8的幅频特性图 由图2看出,主动悬架的低频共振频率明显地偏离了低频固有频率,与取前一组加权系数的主动悬架相比,悬架在高频附近幅值变化较大的现象得到很大改善,由于q1,q2主要为轮胎动变形和悬架动扰度的加权系数,可以看出相对于上一组加权系数,轮胎动变形和悬架动扰度的幅频特性得到了显著的改善,即车辆的平顺性和操纵稳定性得到显著提高。 3) 取q13.35E9,q240.5E9时,由程序得k1201250,k27710,k361600,k423

13、40,及系统的传递函数和幅频特性,绘制幅频特性图%主动悬架q1=3.35e9;q2=40.5e9时的仿真程序:m1=36;m2=240;kt=160000;q1=3.35e9;q2=40.5e9;A=0 1 0 -1;0 0 0 0;0 0 0 -1;0 0 kt/m1 0;B=0;1/m2;0;-1/m1;D=0;0;1;0;C=0 0 0 0;1 0 0 0;0 0 1 0;E=1/m2;0;0;H=0;0;0;Q=q2 0 0 0;0 0 0 0;0 0 q1 0;0 0 0 0;R=1;K,P,F=lqr(A,B,Q,R)Co=ctrb(A,B); rA=rank(Co);Ob=obs

14、v(A,C) rB=rank(Ob);M=A-B*K;N=C-E*K;G=ss(M,D,N,H);G1=tf(G) i=1;for s=0:0.1:80 s=s*2*pi*j; G11=(256.7*s3 + 4.335e004*s2 + 3.727e006*s - 2.178e-008)/(s4 + 97.13*s3 + 9162*s2 + 1.427e005*s + 3.727e006); G12=(-2477*s - 9.938e004)/(s4 + 97.13*s3 + 9162*s2 + 1.427e005*s + 3.727e006); G13= (s3 + 97.13*s2 +

15、6429*s + 1.635e-010)/(s4 + 97.13*s3 + 9162*s2 + 1.427e005*s + 3.727e006); f(i)=abs(G11); h(i)=abs(G12); g(i)=abs(G13); i=i+1;ends=0:0.1:80;figureloglog(s,f,-,s,h,-.,s,g,:)legend(加速度,动扰度,动载荷)图3. q13.35E9,q240.5E9的幅频特性图 由图3可知主动悬架的低频共振频率同样明显地偏离了低频固有频率,在高频处,主动悬架的共振峰“几乎”已消失,知悬架在高频处对振动的抑制较为明显。 总之,权系数对悬架性能

16、有较大影响。当q1、q2取得较大时,加速度值增大,动扰度值减小,而轮胎动变形的影响则不明显。q13.35E5,q240.5E5时,悬架的综合性能较好,有较小的车身加速度、悬架动扰度和轮胎动载荷。四、被动悬架与主动悬架的时域仿真 做时域仿真时,研究输入为一带宽白噪声,输出响应量分别为车身加速度、悬架动扰度、轮胎动变形的变化情况。下面用Simulink对悬架进行仿真并绘制被动悬架系统与主动悬架系统的时域仿真图。SIMULINK仿真框图是在求出被动悬架及主动悬架的传递函数后绘出的。被动悬架的参数选取和主动悬架的一致。即m1=36kg;m2=240kg;Kt=160000N/m;Ks=16000N/m;Cs=980Ns/m1) 被动悬架的时域仿真图图4. 被动悬架的车身加速度、悬架动扰度、轮胎动变形仿真图2) 主动悬架的时域仿真图(1)取q13.35

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论