高一数学教案模板范文_第1页
高一数学教案模板范文_第2页
高一数学教案模板范文_第3页
高一数学教案模板范文_第4页
高一数学教案模板范文_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高一数学教案模板范文 掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;一起看看高一数学教案模板范文!欢迎查阅!#高一数学教案模板范文1#教学目标:(1)理解子集、真子集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;(6)培养学生用集合的观点分析问题、解决问题的

2、能力.教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含之间的区别教学用具:幻灯机教学过程设计(一)导入新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出)已知,问:1.哪些集合表示方法是列举法.2.哪些集合表示方法是描述法.3.将集m、集从集p用图示法表示.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系用符号表示出来.将集n中元素3与集m的关系用符号表示出来.6.集m中元素与集n有何关系.集m中元素与集p有何关系.【找学生回答】1.集合m和集合n;(口答)2.集合p;(口答)3.(笔练结合板演)4.集m中元素有-1,

3、1;集n中元素有-1,1,3;集p中元素有-1,1.(口答)5.,(笔练结合板演)6.集m中任何元素都是集n的元素.集m中任何元素都是集p的元素.(口答)【引入】在上面见到的集m与集n;集m与集p通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(二)新授知识1.子集(1)子集定义:一般地,对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,我们就说集合a包含于集合b,或集合b包含集合a。记作:读作:a包含于b或b包含a当集合a不包含于集合b,或集合b不包含集合a时,则记作:ab或ba.性质:(任何一个集合是它本身的子集)(空

4、集是任何集合的子集)【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?【解疑】不能把a是b的子集解释成a是由b中部分元素所组成的集合.因为b的子集也包括它本身,而这个子集是由b的全体元素组成的.空集也是b的子集,而这个集合中并不含有b中的元素.由此也可看到,把a是b的子集解释成a是由b的部分元素组成的集合是不确切的.(2)集合相等:一般地,对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,记作a=b。例:,可见,集合,是指a、b的所有元素完全相同.(3)真子集:对于两个集合a与b,如果,并且,我们就说集合a

5、是集合b的真子集,记作:(或),读作a真包含于b或b真包含a。【思考】能否这样定义真子集:“如果a是b的子集,并且b中至少有一个元素不属于a,那么集合a叫做集合b的真子集.”集合b同它的真子集a之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合a,b.【提问】(1)写出数集n,z,q,r的包含关系,并用文氏图表示。(2)判断下列写法是否正确aaaa性质:(1)空集是任何非空集合的真子集。若a,且a,则a;(2)如果,则.例1写出集合的所有子集,并指出其中哪些是它的真子集.解:集合的所有的子集是,其中,是的真子集.【注意】()子集与真子集符号的方向。(2)易混符号“”与“”:元素与集合之间

6、是属于关系;集合与集合之间是包含关系。如r,11,2,30与:0是含有一个元素0的集合,是不含任何元素的集合。如:0。不能写成=0,0例2见教材p8(解略)例3判断下列说法是否正确,如果不正确,请加以改正.(1)表示空集;(2)空集是任何集合的真子集;(3)不是;(4)的所有子集是;(5)如果且,那么b必是a的真子集;(6)与不能同时成立.解:(1)不表示空集,它表示以空集为元素的集合,所以(1)不正确;(2)不正确.空集是任何非空集合的真子集;(3)不正确.与表示同一集合;(4)不正确.的所有子集是;(5)正确(6)不正确.当时,与能同时成立.例4用适当的符号(,)填空:(1);(2);(3

7、);(4)设,则abc.解:(1)00;(2)=,;(3),;(4)a,b,c均表示所有奇数组成的集合,a=b=c.【练习】教材p9用适当的符号(,)填空:(1);(5);(2);(6);(3);(7);(4);(8).解:(1);(2);(3);(4);(5)=;(6);(7);(8).提问:见教材p9例子(二)全集与补集1.补集:一般地,设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集),记作,即.a在s中的补集可用右图中阴影部分表示.性质:s(sa)=a如:(1)若s=1,2,3,4,5,6,a=1,3,5,则sa=2,4,6;(2

8、)若a=0,则na=n_;(3)rq是无理数集。2.全集:如果集合s中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.注:是对于给定的全集而言的,当全集不同时,补集也会不同.例如:若,当时,;当时,则.例5设全集,判断与之间的关系.解:练习:见教材p10练习1.填空:,那么,.解:,2.填空:(1)如果全集,那么n的补集;(2)如果全集,那么的补集()=.解:(1);(2).(三)小结:本节课学习了以下内容:1.五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)2.五条性质(1)空集是任何集合的子集。a(2)空集是任何非空集合的真子集。a(a

9、)(3)任何一个集合是它本身的子集。(4)如果,则.(5)s(sa)=a3.两组易混符号:(1)“”与“”:(2)0与(四)课后作业:见教材p10习题1.2#高一数学教案模板范文2#一、教学目标(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;(2)理解逻辑联结词“或”“且”“非”的含义;(3)能用逻辑联结词和简单命题构成不同形式的复合命题;(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;(5)会用真值表判断相应的复合命题的真假;(6)在知识学习的基础上,培养学生简单推理的技能.二、教学重点难点:重点是判断复合命题真假的方法;难点是对“或”的含义的理解.三、教学过程1.

10、新课导入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)学生举例:平行四边形的对角线互相平.(1)两直线平行,同位角相等.(2)教师提问:“相等的角是对顶角”是不是命题?(3)(同学议论结果,答案是肯定的.)教

11、师提问:什么是命题?(学生进行回忆、思考.)概念总结:对一件事情作出了判断的语句叫做命题.(教师肯定了同学的回答,并作板书.)由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.(教师利用投_,和学生讨论以下问题.)例1判断以下各语句是不是命题,若是,判断其真假:命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.2.讲授新课大家看课本(人教版,试验修订本,第一册(上)从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?(片刻

12、后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)(1)什么叫做命题?可以判断真假的语句叫做命题.判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).(2)介绍逻辑联结词“或”、“且”、“非”.“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若则”和“当且仅当”两种形式.对“或”的理解,可联想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一个是成立的,即且;也可以且;也可以且.这与生活中“或”的

13、含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.对“且”的理解,可联想到集合中“交集”的概念.中的“且”,是指“”、“这两个条件都要满足的意思.对“非”的理解,可联想到集合中的“补集”概念,若命题对应于集合,则命题非就对应着集合在全集中的补集.命题可分为简单命题和复合命题.不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.(4)命题的表示:用,来表示.(教师根据学生回答的情况作补

14、充和强调,特别是对复合命题的概念作出分析和展开.)我们接触的复合命题一般有“或”、“且”、“非”、“若则”等形式.给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.对于给出“若则”形式的复合命题,应能找到条件和结论.在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

15、3.巩固新课例2判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.(1);(2)0.5非整数;(3)内错角相等,两直线平行;(4)菱形的对角线互相垂直且平分;(5)平行线不相交;(6)若,则.(让学生有充分的时间进行辨析.教材中对“若则”不作要求,教师可以根据学生的情况作些补充.)例3写出下表中各给定语的否定语(用课件打出来).若给定语为等于大于是都是至多有一个至少有一个至多有#formatimgid_0#个其否定语分别为分析:“等于”的否定语是“不等于”;“大于”的否定语是“小于或者等于”;“是”的否定语是“不是”;“都是”的否定语是“不都是

16、”;“至多有一个”的否定语是“至少有两个”;“至少有一个”的否定语是“一个都没有”;“至多有个”的否定语是“至少有个”.(如果时间宽裕,可让学生讨论后得出结论.)置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)4.课堂练习:第26页练习1,2.5.课外作业:第29页习题1.61,2.#高一数学教案模板范文3#教学目标:(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的属于和不属于关系;(3)掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育

17、馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念-集合(宣布课题),即是一些研究对象的总体。阅读课本p2-p3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。3.思考1:判断以下元素的全体是否组成集合,并说明理由:(1

18、)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程的解;(5)某校20xx级新生;(6)血压很高的人;(7)的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。对学生的解答予以讨论、点评,进而讲解下面的问题。4.关于集合的元素的特征(1)确定性:设a是一个给定的集合,x是某一个具体对象,则或者是a的元素,或者不是a的元素,两种情况必有一种且只有一种成立。(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。(3)无序性:给定一个集合与集合里面元素的顺序无关。(4)集合相等:构成两个集合的元素完全

19、一样。5.元素与集合的关系;(1)如果a是集合a的元素,就说a属于(belongto)a,记作:aa(2)如果a不是集合a的元素,就说a不属于(notbelongto)a,记作:aa例如,我们a表示120以内的所有质数组成的集合,则有3a4a,等等。6.集合与元素的字母表示:集合通常用大写的拉丁字母a,b,c.表示,集合的元素用小写的拉丁字母a,b,c,.表示。7.常用的数集及记法:非负整数集(或自然数集),记作n;正整数集,记作n_或n+;整数集,记作z;有理数集,记作q;实数集,记作r;(二)例题讲解:例1.用或符号填空:(1)8n;(2)0n;(3)-3z;(4)q;(5)设a为所有亚洲国家组成的集合,则中国a,美国a,印度a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论