版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、力学考研面试问题仅供参考材料力学1. 基本假设:连续性、均匀性、各项同性、小变形。2. 杆件的四种基本变形:拉压、剪切、弯曲、扭转。3. 材力研究问题的主要手段:静力平衡条件、物理条件、变形协调条件(儿何 条件)。4. 角应变如何定义,为什么不能以某点微直线段的转角来定义某点的角应变,某点处两垂直微直线段的相对转角;排除刚性转动的影响。5.冷作硬化对材 料有何影响,提高材料的屈服应力。6.什么是圆杆扭转的极限扭矩,使圆杆整个横截面的切应力都达到屈服极限时所能承受的扭矩。7.杆件纯弯 曲时的体积是否变化,拉压弹性模量不同时体积会发生变化。8. 材料破坏的基本形式:流动、断裂9. 四大强度理论,哪
2、些是脆性断裂的强度理论,哪些是塑性屈服的强度理论,10. 斜弯曲:梁弯曲后挠曲线所在平面与载荷作用面不在同一平面上。11.压杆失 稳时将绕那根轴失稳,惯性矩最小的形心主惯性轴。,xl2.为什么弹性力学中对微元体进行分析时,两侧应力不同(如,),dx, , xxx,而材料力学中对微元体进行分析时,两侧应力相同(均为力,因为材料力学中没有考虑体力的影响,而实质上弹性力学中记及体力的影响之 后所得平衡微分方程就是体力项与不同侧多出的一阶项的平衡关系。弹性力学1. 材料力学、结构力学、弹性力学的研究内容材料力学:求杆件在四种基本变形下的应力、应变、位移,并校核其刚度、强 度、稳定性;结构力学:求杆系承
3、载时的弹性力学:研究各种形状结构在弹性阶段承载时的2. 弹性力学基本假设:连续性、线弹性、均匀性、各项同性、小变形。3.理 想弹性体的概念:满足基本假设询4个。4. 弹性力学解为什么一般比材料力学解精确,材力在研究问题时除了从静力学、物理学、儿何学三方面分析时,还用了一些 针对特定问题的形变或应力分布条件(如杆件拉压、扭转、弯曲时都用了平面假设),而弹性力学除了从基本的三个方程外,一般没有用这些假设,故5. 举例说明体力的概念:重力、惯性力6. 面力正负号的规定方法:正面正向负面负向为正。7. 小变形假设的作用:可略去各种高阶项,使问题的控制方程,包括代数方程 和微分方程均化为线性方程。8.
4、平面应力和平面应变问题区别,(可以分别从儿何特征、外力特征、变性特 征进行说明,P9-10)9. 弹性力学问题都是超静定问题,平面弹性力学问题是1次超静定问题10. 为什么平面问题的平衡微分方程对于两类平面问题都适用,对于平面应力问题,平面问题平衡微分方程的推导过程完全符合,自然适用, 而对于平面应变问题,推导过程没有记及轴向(Z向)应力的影响,但根据平面应变 问题特征,询后面上轴向(Z向)应力相同,自称平衡,同样适用。另外,推导的得 到的方程不含材料常数,故也是佐证。11. 什么是圣维南原理,(P24-25)三个要点为次要边界、静力等效、近处有影 响远处儿乎无影响。12. 什么是静力等效,主
5、矢量、主矩相等,对刚体来而言完全正确,但对变形体而言一般是不等效 的。13. 什么是弹性方程,用位移表示应力的方程为弹性方程,是由儿何方程代入物理方程得到。14.位移法的基本方程,用位移表示的平衡微分方程和用位移表示的应力边界条件。13.相容方程实 质上就是由儿何方程推得。16.应力法的基本方程,平衡微分方程、应力边界条件、相容方程、位移单值条件(对于多连体)。17.弹性力学的边界条件有哪些,位移边界、应力边界、混合边界。18. 为什么应力边界问题用位移法、应力法均可求解,而位移边界问题、混合 边界问题,一般都只能用位移法求解,因为位移边界条件一般无法用应力分量表示,而应力边界条件可通过弹性方
6、程 用位移分量表示。19. 相容条件的适用范围,所有位移单值连续的物体。20. 常体力条件下的相容方程为调和方程,而应力函数应为重调和函数。21.什么是逆解法,什么是半逆解法,(P34)22. 什么是可能的应力,可能的位移,可能的应力是指满足平衡微分方程、应力边界条件的应力;可能的位移是指满足位移边界条件、相容方程的位移。23. 什么是应力集中,因构件外形突然变化(如空洞、裂纹)而引起局部应力急剧增大的现象。24. 差分法的基本思想,将构件网格化,利用差分将节点各阶导数用临近节点处函数值表示,进而将基 本微分方程、边界条件用差分代数方程表示,从而把求解微分方程变为求解代数方 程的问题。25.
7、平衡微分方程、儿何方程、弹性本构方程、边界条件的张量表示,(主要前2个)1, , , ,2G, , , f 0, nf, uu, , uu,ijkkijijijji, ijjiiiijijji, 226. 剪应变分量与工程剪应变有何不同,工程剪应变是剪应变分量的2倍。27. 泛函与变分的概念。泛函为以函数为自变量的函数,变分是自变量函数形式上的微变。力学变分法中的泛函指什么,形变势能、外力势能。28.弹性29. 位移变分原理是什么,根据能量守恒原理,物体形变势能的变分等于外力在虚位移上所做的虚功,即 位移变分方程(等价于平衡微分方程、应力边界条件),从位移变分方程可推出虚功 方程(P261);
8、和最小势能原理(P262),即给定外力作用下,在满足位移边界条件的 各组位移中,真实位移总使总势能为极小值。位移变分法的步骤:1、假定位移分量形式(含待定系数)2、将位移分量代入位 移变分方程3、将待定系数的变分归并,待定系数变分的系数为0,得到代数方程 组,求解待定系数。30. 应力变分原理是什么,(应力变分方程相当于相容方程、位移边界条件)31、极端各向异性材料常数有21个,有一个弹性对称面的材料常数有13个,正交各向异性材料常数有9个,横贯各向异性材料常数有5个,各项同性材料常数有2个。计算力学1. 有限元法的基本思想,将一个结构离散为单元,通过边界结点连结成组合体,通过和原问题数学模型
9、 等效的变分原理或加权余量法,建立求解未知场函数(通常是位移)在结点处值的代 数方程组(矩阵形式),用数值方法求解,而单元内部的未知场函数分布通过结点处 函数值和单元内部插值函数求得,这样就得到了未知场函数在整个求解域中的分 布。2. 有限元法中是如何实现位移连续的,通过单元内部位移插值函数实现。3. 有限元法收敛的条件是什么,选取的单元位移模式满足完备性条件和协调性条件。4. 讣算力学中的总刚矩阵是如何集成的,通过单元节点自III度转换矩阵进行集成,实际上就是直接将单刚阵中的元素对 号直接叠加到总刚矩阵上。5. 计算力学中总刚矩阵的奇异性如何消除,引入边界条件,一般采用对角元素乘大数法。6.
10、 单刚矩阵为什么会奇异,(1)对于平面问题本因只有3个平衡方程(2)单元应该可以有任意的刚性位移,从这个角度上讲单刚阵必奇异。7.总 刚矩阵的特点,对称性、奇异性、带状稀疏性、对角元大于08.有限元位移解为什么有下限性质,单元本应有无限多自由度,但选定了单元位移模式后,只有有限个自山度了, 相当于对单元施加了约束,是单元刚度较实际增加,致使整体偏刚,故位移小于精 确解。流体力学(以前出过答案)1. 什么是流体,2. 研究流体的2个基本方法,(拉格朗日法、欧拉法)3. 欧拉法和拉格朗日法的区别,4. 流体可以受哪2类力,(质量力、表面力)5. 粘性流体的2种流动方式,(层流、紊流)6. 流体的受
11、力与固体有何不同,流体不能受拉,只能受压,不能受集中力,只能受表面力。7.什么是理想流 体,8.流体运动的分类(按流体性质分、按流动状态分、按空间坐标分,P51) 9. 什么是定常流动、非定常流动,10. 什么是沿程阻力、局部阻力,系统、控制体,11.什么叫12. 什么是不可压缩流体,13. 流体静力学的适用范围,(理想流体和粘性流体都适用)14.什么是急变 流、缓变流,15. 迹线和流线的区别,16. 流管、流束、总流的概念,塑性力学1. 弹塑性本构关系与弹性本构关系有何不同,原因是什么,不同在于应力与应变之间不存在一一对应的关系,原因是弹塑性本构关系与加 载历史有关。2. 等向强化模型与随
12、动强化模型有何区别,等向:认为拉伸和压缩时的强化屈服应力绝对值始终相等。随动:认为拉伸和压缩时的强化屈服应力(代数值)之差始终相等。3.什么是 材料的包式效应,4. 弹性极限曲线依赖于加载路径,而极限载荷曲线为结构固有性质,与加载 路径无关。5. 什么是塑性钱,与普通钱支有何区别,梁某截面处弯曲达到了塑性极限弯矩时,该处曲率可任意增长。区别在于:塑性狡可承受弯矩,反向转动相当于卸载。6.求主应力实际上就 是特征值问题。7. 两个屈服准则,Tresca、Mises8. 什么是加载、卸载,加载:产生新的塑性变形(应力增量向量指向加载面外法线方向)。卸载:材料状态处于屈服面上,并从塑性状态进入弹性状
13、态。9.有应变是不 是一定有应力,有应力是不是一定有应变,为什么,均不一定,见随动强化模型的应力应变图。10.弹塑性边值问题的提法有哪2和I,全量理论边值问题、增量理论边值问题理论力学1. 什么是惯性系,无角加速度和线加速度的坐标系为惯性系。2. 柯西加速度产生的原因,3. 什么是虚位移,虚功,某瞬时,质点系在约束允许的条件下可能实现的任何无限小的位移为虚位移。力在虚位移上所做功为虚功。4. 什么是虚位移原理,对于具有理想约束的质点系,其平衡的充要条件是:作用于质点系的所有主动力在任何虚位移中所作虚功之和为0.5. 达朗贝尔原理和虚位移原理结合后是什么,动力学普遍方程。6.定常约束, 非定常约束,(P343)7. 完整约束,非完整约束,(P343)8. 理想约束,在质点系任何虚位移中,所有约束力所做虚功之和为0.9. 主动力,其他1.为什么复合材料力学要从细观角度进行研究,复合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行贷款委托代理合同(2篇)
- 巴西课件 湘教版
- 人教版南辕北辙课件
- 苏教版江苏省扬州市扬州中学教育集团树人学校2023-2024学年高一上学期期中数学试题
- 老舍《茶馆》课件
- 外科护理课件
- 基层教育 课件
- 西京学院《中华才艺》2023-2024学年第一学期期末试卷
- 西京学院《外国文学》2021-2022学年第一学期期末试卷
- 西华师范大学《中外电影史》2021-2022学年期末试卷
- 能源调度中心方案
- 2024年高考英语模拟试卷3(九省新高考卷) (二)
- 《建筑工程制图》题库
- 工程联系单表格样本
- 新媒体运营智慧树知到期末考试答案章节答案2024年黑龙江职业学院
- 耳鼻喉科病例讨论模板
- 《道路行驶记录仪检测装置校准规范-公示稿》
- 低分学生提升计划小学数学
- 滑坡泥石流-高中地理省公开课金奖全国赛课一等奖微课获奖
- 人工智能职业生涯规划报告总结
- 主题班队会教学设计
评论
0/150
提交评论