函数的单调性与导数-公开课ppt课件_第1页
函数的单调性与导数-公开课ppt课件_第2页
函数的单调性与导数-公开课ppt课件_第3页
函数的单调性与导数-公开课ppt课件_第4页
函数的单调性与导数-公开课ppt课件_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.3.1函数的单调性与导数(第1课时,高二数学,一、新课导入-复旧知新,1.函数的单调性是怎样定义的,2.怎样用定义判断函数的单调性,一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2, 当x1f (x2),那么就说f(x)在区间D上是减函数; 如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有单调性。区间D叫做函数的单调区间,1)取值(2)作差(3)变形(4)定号(5)结论,下图(1)表示高台跳水运动员的高度 h 随时间 t 变化的函数h(t)= -4.9 t 2+6.5t+10 的图象, 图(2)表示高台

2、跳水运动员的速度 v 随时间 t 变化的函数 v(t)= -9.8t+6.5 的图象.运动员从起跳到最高点, 以及从最高点到入水这两段时间的运动状态有什么区别,h,O,a,b,t,1,O,v,t,2,a,b,二、讲授新课-导入新课,运动员从起跳到最高点,离水面的高度h随时间t 的增加而增加,即h(t)是增函数.相应地,v(t)=h(t)0,从最高点到入水,运动员离水面的高度h随时间t的增加而减少,即h(t)是减函数.相应地,v(t)=h(t)0,O,1,a,b,h,t,O,v,t,a,b,2,通过观察图像,我们可以发现,观察下面一些函数的图象, 探讨函数的单调性与其导函数正负的关系,二、讲授新

3、课-问题探究,y,x,y=x,o,y,x,o,2,1,y=x2,x,y,o,3,y=x3,4,x,y,o,二、讲授新课-问题探究,y,x,o,y=f(x,一般地,函数的单调性与其导函数的正负有如下关系,在某个区间(a,b)内, 如果 f (x) 0 , 那么函数y=f(x)在这个区间内单调递增; 如果 f (x)0 , 那么函数y=f(x)在这个区间内单调递减,x0,f(x0,x1,f(x1,特别地,如果 在某个区间内恒有f (x)=0 , 那么函数y=f(x)在这个区间内是常数函数,例 1. 已知导函数 f (x) 的下列信息,当1 0;当 x 4 , 或 x 1时, f (x) 0; 当

4、x = 4 , 或 x = 1时, f (x) =0,试画出函数 f (x) 的图象的大致形状,解,当1 0,可知 f (x) 在此区间内单调递增,当 x 4 , 或 x 1时, f (x) 0 ,可知 f (x) 在此区间内单调递减,当 x = 4 , 或 x = 1时, f (x) =0 . (这两点比较特殊,我们称他们为“临界点”,综上, 函数 f (x) 图象的大致形状如右图所示,二、讲授新课-牛刀小试,二、讲授新课-牛刀小试,练习. 设导函数y=f (x)的图象如图,则其原函数可能为(,A,B,C,D,C,y=f(x,y=f(x,y=f(x,y=f(x,二、讲授新课-典例精讲,例 2

5、. 判断下列函数的单调性, 并求出单调区间,1) f(x)=x3+3x (2) f(x)=x2-2lnx,例 2. 判断下列函数的单调性, 并求出单调区间,二、讲授新课-典例精讲,解,1) f(x)=x3+3x (2) f(x)=x2-2lnx,1)f (x)=x3+3x= 3(x2+1)0,所以函数f(x)=x3+3x在R上单调递增。 所以函数f(x)=x3+3x的单调增区间为R,二、讲授新课-典例精讲,例 3. 判断下列函数的单调性, 并求出单调区间,1) f(x)=x2-2x-3, (2) f(x)=x22lnx,解,2) 函数f(x)=x22lnx定义域为,当f (x)0,即x1时,函

6、数f(x)=x22lnx单调递增,当f (x)0,即0 x1时,函数f(x)=x22lnx单调递减,所以函数f(x)=x22lnx的单调增区间为 ,单调减区间为(0,1,三、问题总结,利用导数求函数f(x)的单调区间的一般步骤为,1)确定函数f(x)的定义域,2)求导数f (x,3)在函数f(x)的定义域内解不等式f (x)0和f (x)0,4)根据(3)的结果确认f(x)的单调区间,四、巩固练习,f (x)=3x-x3=3-3x2=-3(x2-1)=-3(x-1)(x+1,当f (x)0,即-1x1时,函数f(x)=3x-x3 单调递增,当f (x)1或x-1时,函数f(x)=3x-x3 单调递减,所以函数f(x)=3x-x3的单调增区间为 (-1,1),单调减区间为 和,判断函数f(x)=3x-x3的单调性, 并求出单调区间,解,五、课堂小结,在某个区间(a,b)内, 如果 f (x) 0 ,那么函数在这个区间内单调递增; 如果 f (x)0 , 那么函数在这个区间内单调递减,2.利用导函数求函数f(x)的单调区间的一般步骤为,1)确定函数f(x)的定义域; (2)求导数f (x); (3)在函数f(x)的定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论