




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.1.2 离散型随机变量及其分布列一、教学目标知识与技能:会求出某些简单的离散型随机变量的概率分布。过程与方法:认识概率分布对于刻画随机现象的重要性。情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。二、教学重难点教学重点:离散型随机变量的分布列的概念。教学难点:求简单的离散型随机变量的分布列。三、教学过程复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母、等表示。2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。 3连续型随机变量: 对于随机变量可能取的值,可以取某一
2、区间内的一切值,这样的变量就叫做连续型随机变量。 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出。 若是随机变量,是常数,则也是随机变量,并且不改变其属性(离散型、连续型)。讲解新课:1. 分布列:设离散型随机变量可能取得值为 x1,x2,x3,取每一个值xi(i=1,2,)的概率为,则称表x1x2xiPP1P2Pi为随机变量的概率分布,简称的分布列。2. 分布列的两个性质:任何随机事件发生的概率都满足:,并且不可能事件的概率为0,必然事件的概率为
3、1由此你可以得出离散型随机变量的分布列都具有下面两个性质:Pi0,i1,2,;P1+P2+=1对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即例题讲解:例1.在掷一枚图钉的随机试验中,令如果针尖向上的概率为,试写出随机变量 X 的分布列解:根据分布列的性质,针尖向下的概率是() 于是,随机变量 X 的分布列是01P像上面这样的分布列称为两点分布列。 两点分布列的应用非常广泛如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称=P (X = 1)为成功概率。
4、两点分布又称01分布,由于只有两个可能结果的随机试验叫伯努利试验,所以还称这种分布为伯努利分布。,例 2在含有 5 件次品的 100 件产品中,任取 3 件,试求: (1)取到的次品数X 的分布列;(2)至少取到1件次品的概率解: (1)由于从 100 件产品中任取3 件的结果数为,从100 件产品中任取3件,其中恰有k 件次品的结果数为,那么从 100 件产品中任取 3 件,其中恰有 k 件次品的概率为.所以随机变量 X 的分布列是 X0123P(2)根据随机变量X 的分布列,可得至少取到 1 件次品的概率P ( X1 ) = P ( X = 1 ) + P ( X = 2 ) + P (
5、X = 3 )0.138 06 + 0. 005 88 + 0. 00006= 0. 144 00 .一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X件次品数,则事件 X=k发生的概率为,其中,且称分布列X01P 为超几何分布列如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布课堂习题:习题一在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同一次从中摸出5个球,至少摸到3个红球就中奖求中奖的概率解:设摸出红球的个数为X,则X服从超几何分布,其中 N = 30 , M=10, n=5 于是中奖的概率 P (X3 ) = P (X =3 ) + P ( X = 4 )十 P ( X = 5 )=0.191.习题二一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得1分,试写出从该盒中取出一球所得分数的分布列分析:欲写出的分布列,要先求出的所有取值,以及取每一值时的概率解:设黄球的个数为n,由题意知绿球个数为2n,红球个数为4n,盒中的总数为7n ,所以从该盒中随机取出一球所得分数的分布列为101P四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 林业产品绿色制造与可持续发展考核试卷
- 沿海货物运输企业文化建设考核试卷
- 天然气行业国际合作的法律环境考核试卷
- 石油钻采设备润滑油脂的选择与应用考核试卷
- 建筑物安全标识系统考核试卷
- 相关方管理中的组织文化塑造与传播考核试卷
- 海洋生物技术前沿与应用考核试卷
- 毛皮制品加工客户服务与满意度考核试卷
- 2025标准租赁合同协议书【典范】
- 2025选调生-《行政职业能力测验》-言语理解与表达考前通关必练题库-含答案
- 2025购销商品合同模板
- 2024年山西华阳新材料科技集团有限公司招聘笔试真题
- 2025年03月双鸭山市“市委书记进校园”引才活动黑龙江能源职业学院13人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年湖南兴湘投资控股集团有限公司春季校园招聘28人笔试参考题库附带答案详解
- 比例的应用(教学设计)-2024-2025学年六年级下册数学北师大版
- 农业机械设备使用与操作指南
- 2025年03月春季甘肃临夏州引进高层次人才和急需紧缺专业技术人才344人笔试历年参考题库考点剖析附解题思路及答案详解
- 2025年03月州省气象部门第二批公开招聘应届高校毕业生34人(第6号)笔试历年参考题库考点剖析附解题思路及答案详解
- 图书管理员的岗位技能要求与试题及答案
- 自体输血管理制度与技术规范
- 燃气管道管道吹扫方案
评论
0/150
提交评论