工程数学作业(第四次_第1页
工程数学作业(第四次_第2页
工程数学作业(第四次_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、工程数学作业(第四次)第6章 统计推断(一)单项选择题 设是来自正态总体(均未知)的样本,则(A)是统计量 A. B. C. D. 设是来自正态总体(均未知)的样本,则统计量(D)不是的无偏估计 A. B. C. D. (二)填空题 1统计量就是 不含未知参数的样本函数 2参数估计的两种方法是 点估计 和 区间估计 常用的参数点估计有 矩估计法 和 最大似然估计 两种方法 3比较估计量好坏的两个重要标准是 无偏性 , 有效性 4设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量 5假设检验中的显著性水平为事件(u为临界值)发生的概率 (三)解答题 1设对总体得到一个容量为1

2、0的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5, 5.0, 3.5, 4.0试分别计算样本均值和样本方差解: 2设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数 解:提示教材第214页例3矩估计:最大似然估计:, 3测两点之间的直线距离5次,测得距离的值为(单位:m):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值并在;未知的情况下,分别求的置信度为0.95的置信区间解: (1)当时,由10.95, 查表得: 故所求置信区间为: (2)当未知时,用替代,查t (4, 0.05 ) ,得 故所求置信区间为:4设某产品的性能指标服从正态分布,从历史资料已知,抽查10个样品,求得均值为17,取显著性水平,问原假设是否成立 解:,由 ,查表得:因为 1.96 ,所以拒绝 5某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化()解:由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论