异面直线间的距离(高中全部8种方法详细例题_第1页
异面直线间的距离(高中全部8种方法详细例题_第2页
异面直线间的距离(高中全部8种方法详细例题_第3页
异面直线间的距离(高中全部8种方法详细例题_第4页
异面直线间的距离(高中全部8种方法详细例题_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、异面直线间的距离求异面直线之间距离的常用策略: 求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。常用方法有:1、 定义法2、 垂直平面法(转化为线面距)3、 转化为面面距4、 代数求极值法5、 公式法6、 射影法7、 向量法8、 等积法1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。例1 已知:边长a为的两个正方形ABCD和CDEF成1200的二

2、面角,求异面直线CD与AE间的距离。思路分析:由四边形ABCD和CDEF是正方形,得CDAD,CDDE,即CD平面ADE,过D作DHAE于H,可得DHAE,DHCD,所以DH是异面直线AE、CD的公垂线。在ADE中,ADE=1200,AD=DE=a,DH=。即异面直线CD与AE间的距离为。2 垂直平面法:转化为线面距离,若a、b是两条异面直线,过b上一点A作a的平行线a/,记a/与b确定的平面。从而,异面直线a、b间的距离等于线面a、间的距离。例1 如图,BF、AE两条异面直线分别在直二面角P-AB-Q的两个面内,和棱分别成、角,又它们和棱的交点间的距离为d,求两条异面直线BF、AE间的距离。

3、思路分析:BF、AE两条异面直线分别在直二面角P-AB-Q的两个面内,EAB=,FAB=,AB=d,在平面Q内,过B作BHAE,将异面直线BF、AE间的距离转化为AE与平面BCD间的距离,即为A到平面BCD间的距离,又因二面角P-AB-Q是直二面角,过A作ACAB交BF于C,即AC平面ABD,过A作ADBD交于D,连结CD。设A到平面BCD的距离为h。由体积法VA-BCD=VC-ABD, 得 h=3转化为面面距离 若a、b是两条异面直线,则存在两个平行平面、,且a、b。求a、b两条异面直线的距离转化为平行平面、间的距离。例3已知:三棱锥S-ABC中,SA=BC=13,SB=AC=14,SC=A

4、B=15,求异面直线AS与BC的距离。思路分析:这是一不易直接求解的几何题,把它补成一个易求解的几何体的典型例子,常常有时还常把残缺形体补成完整形体;不规则形体补成规则形体;不熟悉形体补成熟悉形体等。所以,把三棱锥的四个面联想到长方体割去四个直三棱锥所得,因此,将三棱锥补形转化为长方体, 设长方形的长、宽、高分别为x、y、z, 则 解得x=3,y=2,z=1。由于平面SA平面BC,平面SA、平面BC间的距离是2,所以异面直线AS与BC的距离是2。4 代数求极值法 根据异面直线间距离是分别在两条异面直线上的两点间距离的最小值,可用求函数最小值的方法来求异面直线间的距离。例4 已知正方体ABCD-

5、A1B1C1D1的棱长为a,求A1B与D1B1的距离。思路分析:在A1B上任取一点M,作MPA1B1,PNB1D1,则MNB1D1,只要求出MN的最小值即可。设A1M=x,则MP=x,A1P=x。所以PB1=ax,PN=(ax)sin450=(ax),MN=。当x=时,MNmin=。5公式法 异面直线间距离公式:d=求得异面直线间的距离。例5 已知圆柱的底面半径为3,高为4,A、B两点分别在两底面圆周上,并且AB=5,求异面直线AB与轴OO/之间的距离。思路分析:在圆柱底面上AOOO/,BO/OO/,又OO/是圆柱的高,AB=5,所以d=。即异面直线AB与轴OO/之间的距离为。6 射影法 将两

6、条异面直线射影到同一平面内,射影分别是点和直线或两条平行线,那么点和直线或两条平行线间的距离就是两条异面直线射影间距离。例6 在正方体ABCD-A1B1C1D1中,AB=1,M、N分别是棱AB、CC1的中点,E是BD的中点。求异面直线D1M、EN间的距离。思路分析:两条异面直线比较难转化为线面、面面距离时,可采用射影到同一平面内,把异面直线D1M、EN射影到同一平面BC1内,转化为BC1、QN的距离,显然,易知BC1、QN的距离为。所以异面直线D1M、EN间的距离为。7.向量法:先求两异面直线的公共法向量,再求两异面直线上两点的连结线段在ABCDD1C1A1B1公共法向量上的射影长。例7 已知

7、:正方体ABCD-A1B1C1D1的棱长为1,求异面直线DA1与AC的距离。思路分析:此题是求异面直线的距离问题,这个距离可看作是在异面直线的法向量方向上的投影的绝对值。此题教师引导,学生口述,教师在课件上演示解题过程,总结解题步骤。解:如图所示建立空间直角坐标系D-xyzD(0,0,0) A1(1,0,1) A(1,0,0) C(0,1,0) 设异面直线DA1与AC的法向量 异面直线DA1与AC的距离为步骤小结:求异面直线间的距离:建立空间直角坐标系; 写出点的坐标,求出向量坐标;SADBC求出异面直线的法向量的坐标; 代入异面直线间的距离公式。例8 已知:SA平面ABCD,DAB=ABC=90,SA=AB=BC=a,AD=2a,求A到平面SCD的距离。解:如图所示建立空间直角坐标系Axyz A(0,0,0)C(a,a,0) D(0,2a,0) S(0,0,a) =(0,2a,0)=(a,a,-a) =(0,2a,-a) 设面SCD的一个法向量=(x,y,1) 且 =0 且=0 =(1)点A到面SCD的距离为 点A到面SCD的距离为八 等积法 把异面直线间的距离转化为求某个特殊几何体的的高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论