高二数学选修2-3期末复习题_第1页
高二数学选修2-3期末复习题_第2页
高二数学选修2-3期末复习题_第3页
高二数学选修2-3期末复习题_第4页
高二数学选修2-3期末复习题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高二数学选修2-3习题11. 满足,且关于的方程有实数解的有序数对的个数为( )A14 B13 C12 D102. 某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式()A 种B 种 C种 D种3. 在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是 ( )A. B. C. D. 4. 用五种不同的颜色,给下图中的(1)(2)(3)(4)的各部分涂色,每部分涂一种颜色,相邻部分涂不同颜色,则涂色的方法共有 种。5. 从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有( )A96种 B

2、180种 C240种 D280种学6. 要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有_种不同的种法(用数字作答)7已知 ,则 _ 8. 除以所得余数是( )A0 B8 C-1 D19. 设的展开式的各项系数的和为所有二项式系数的和为,若,则为( )A4 B5 C6 D810. 展开式中,的系数是( )A B C D11的展开式中项的系数是 .12已知展开式中有第六项的二项式系数最大,求:(1)展开式中不含项;(2) 的值.13设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6。现有一个10岁的这种动物,它能活到15岁的概率是 。 14随机变量

3、服从二项分布,且则等于( )A. B. C. 1 D. 015 有4台设备,每台正常工作的概率均为0.9,则4台中有2台能正常工作的概率为 16有三种产品,合格率分别为,各抽取一件进行检验。求:(1)恰有一件不合格的概率;(2)至少有一件不合格的概率。17设随机变量,则的值等于 ( )A. 1 B. 2 C. D. 418 已知随机变量服从正态分布,且有,则 19 灯泡厂生产的白炽灯泡的寿命为,已知。要使灯泡的平均寿命为小时的概率为,问灯泡的最低寿命应控制在多少小时以上? 20. 若为非负实数,随机变量的分布为012则的最大值为 ,的最大值为 .21已知某类型的高射炮在它们控制的区域内击中具有

4、某种速度的敌机的概率为(1)假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率;(2)要使敌机一旦进入这个区域内有以上的概率被击中,至少需要布置几门这类高射炮?(参考数据,)22某射击运动员射击一次所得环数的分布列如下:现进行两次射击,以该运动员两次射击所得的最高环数作为他的成绩,记为(1)求该运动员两次都命中7环的概率(2)求的分布列及数学期望23甲、乙两名射击运动员,甲射击一次命中环的概率为,乙射击一次命中环的概率为,若他们独立的射击两次,设乙命中环的次数为,则,为甲与乙命中环的次数的差的绝对值求的值及的分布列及数学期望24. 某厂工人在2006年里有1个季度完成生产任务,

5、则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列及期望高二数学选修2-3综合习题2以下公式或数据供参考:独立性检验临界值表概率0.400.250.150.100.050.0250.0100.0050.001K00.7081.3232.0722.7063.8415.0246.6357.87910.828 ;若XN,则,;1在下边的列联表中,类中类B所占的比例为 (

6、 )类1类2类Aab类Bcd 合计合计2分类变量和的列联表如下,则( ) A. 越小,说明与的关系越弱 B. 越大,说明与的关系越强 C. 越大,说明与的关系越强D. 越接近于,说明与关系越强3在两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的是( )A.模型1的相关指数R2为0.78 B. 模型2的相关指数R2为0.85C.模型3的相关指数R2为0.61 D. 模型4的相关指数R2为0.314在求两个变量x和y的线性回归方程过程中, 计算得,则该回归方程是_ _ 5为考察某种药物预防疾病的效果,进行动物试验,调查了105个样本,统计结果为:服药的

7、共有55个样本,服药但患病的仍有10个样本,没有服药且未患病的有30个样本.(1)根据所给样本数据画出22列联表;(2)请问能有多大把握认为药物有效?(参考数据)6假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:234562.23.85.56.57.0若由资料知,y对x呈线性相关关系,试求:(1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?7已知与之间的几组数据如下表:123456021334假设根据上表数据所得线性回归直线方程为若某同学根据上表中前两组数据和求得的直线方程为,则以下结论正确的是( )A B C D8某联欢晚会举行抽奖活动,举办方设置

8、了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以得3分;未中奖则不得分每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明、小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?9某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:,分别加以统计,得到如图所示的频率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论