




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2013-2014(1)专业课程实践论文惩罚函数的外点法一、算法理论基本原理 设原目标函数为,在不等式约束条件下外点惩罚函数法求极小,外点法常采用如下形式的泛函: (1)由此,外点法所构造的相应的惩罚函数形式为: (2)式中,惩罚因子是一个递增的正值数列,即: 惩罚项中: (3)由此可见,当迭代点位于可行域内满足约束条件时,惩罚项为零,这时不管取多大,新目标函数就是原目标函数,亦即满足约束条件时不受“惩罚”,此时求式(2)的无约束极小,等价于求原目标函数在已满足全部约束条件下的极小;而当点位于可行域外不满足约束条件时,惩罚项为正值,惩罚函数的值较原目标函数的值增大了,这就构成对不满足约束条件的
2、一种“惩罚”。由式(2)可知,每一次对罚函数求无约束的极值,其结果将随该次所给定的罚因子值而异。在可行域外,离约束边界越近的地方,约束函数的值越大,的值也就越小,惩罚项的作用也就越弱,随着罚因子逐次调整增大,有增大惩罚项的趋势,但一般说来泛函值下降得更快一些。此时尽管但泛函值亦趋于零,满足式(3)。最后当,泛函值和惩罚项值均趋近于零。外点法在寻优过程中,随着罚因子的逐次调整增大,即取,所得的最优点序列可以看作是以为参数的一条轨迹,当时,最优点点列从可行域的外部一步一步地沿着这条轨迹接近可行域,所得的最优点列逼近原问题的约束最优点。这样,将原约束最优化问题转换成为序列无约束最优化问题。外点法就是
3、因从可行域的外部逼近最优解而得名。外点惩罚函数法的具体迭代步骤如下:(1) 给定初始点,初始惩罚因子,迭代精度,递增系数, 维数。置。(2) 以为初始点,用无约束最优化方法求解惩罚函数的极小点,即: (3) 检验是否满足迭代终止条件:或 若不满足,则进行第(4)步;否则转第(5)步。 (4)令,置,返回进行第(2)步。 (5) 输出最优解:,停止迭代。 二、算法框图给定, c ,k=0i=0求与Hessian矩阵输出和YNi=i+1k=k+1YN结束三、算法程序clcm=zeros(1,50);a=zeros(1,50);b=zeros(1,50);f0=zeros(1,50);%a b为最优
4、点坐标,f0为最优点函数值,f1 f2最优点梯度。syms x1 x2 e; %e为罚因子。m(1)=1;c=10;a(1)=0;b(1)=0; %c为递增系数。赋初值。f=(x1-1)2+x22+e*(x2-1)2;f0(1)=1;fx1=diff(f,x1);fx2=diff(f,x2);fx1x1=diff(fx1,x1);fx1x2=diff(fx1,x2);fx2x1=diff(fx2,x1);fx2x2=diff(fx2,x2);%求偏导、海森元素。for k=1:100 %外点法e迭代循环.x1=a(k);x2=b(k);e=m(k);for n=1:100 %梯度法求最优值。f
5、1=subs(fx1); %求解梯度值和海森矩阵f2=subs(fx2);f11=subs(fx1x1);f12=subs(fx1x2);f21=subs(fx2x1);f22=subs(fx2x2);if(double(sqrt(f12+f22)=0.001) %最优值收敛条件a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs(f);break;elseX=x1 x2-inv(f11 f12;f21 f22)*f1 f2;x1=X(1,1);x2=X(2,1);endendif(double(sqrt(a(k+1)-a(k)2+(b(k+1)-b(k)2)=0.001)&(double(abs(f0(k+1)-f0(k)/f0(k)=0.001) %罚因子迭代收敛条件a(k+1) %输出最优点坐标,罚因子迭代次数,最优值b(k+1)kf0(k+1)break;elsem(k+1)=c*m(k);endend四、算法实现例1.利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人质释放协议书范本
- 物业继承债务协议书
- 支付房租欠款协议书
- 配偶之间房产协议书
- 医院食堂供暖协议书
- 塔吊器材租赁协议书
- 实施项目协议书范文
- 农场买卖协议书范本
- 终止经营协议书范本
- 恋爱协议书剧情介绍
- 育婴行业前景及就业前景
- 2024年美容师考试理论回顾试题及答案
- Unit5Whatwereyoudoingwhentherainstormcame?SectionB1a-1d课件人教版八年级英语下册
- 2025年中铁快运股份有限公司招聘(98人)笔试参考题库附带答案详解
- 老旧城市燃气管道更新改造工程设计方案
- 中医经典临证思维与实践知到课后答案智慧树章节测试答案2025年春浙江中医药大学
- 动火和受限空间作业监护人考试题有答案
- 《高频电子技术》5振幅调制解调与混频电路
- 老年肺炎临床诊断与治疗专家共识解读(2025年)解读课件
- 制药废水处理工艺
- 2025年晋城职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析
评论
0/150
提交评论