下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解答题特点及解题方法技巧解答题也就是通常所说的主观题。它可以是计算题、证明题,也可以是应用题。大多数是综合题,不但综合各部分知识、技能,同时综合考查各种数学能力。因此,解答题做得好坏是考生数学素质的体现,也是分数拉开距离的关键。 一 解答题的特点。解答题是给出一定的已知条件,然后提出一定的要求(即要达到一定的目的),让考生去解答。二 解答方法与技巧。思维过程:(1)明确题目要求达到的目的,为解题指明方向; (2)回顾“要求达到的目的”相应的方法及所需要的条件; (3)对照条件选择最简途径(方法)去解题。解答方法与技巧:(1)以条件为出发点;(2)推理、演算或计算过程要有条理、合逻辑、完整;(3
2、)要呼应题目要求有结论。三 范例。例题1:已知 为锐角, , ,求 的值。分析:三角函数求值问题,以角、三角函数名称为思维主线。要求 的值,首先看所求角 与已知角的关系,易见 ;再看三角函数名称,所求为弦则必须把已知中的切化弦。解:因为 为锐角即 ,所以 又 ,所以 所以 ,从而 又 ,所以 故 。例题2:已知 的内角 成等差数列, 为最小角,且 ,求 的值。分析:由 成等差数列结合三角形内角和易求角 ,再根据等差数列的性质可求 。解:因为 成等差数列,所以 又 ,所以 可设 则 由 得 所以 ,得 故 。例题3:求函数 的最大值和最小值。分析:求函数的最值问题主要应用函数的单调性。然而,求二
3、次函数的最值则关键在于确定它的开口方向和对称轴。解:因为 ,所以函数图象开口向上又它的称轴方程为 ,所以当 时函数取得最小值为 ;当 时函数取得最大值为 。例题4:若 ,求函数 的最大值和最小值。分析:此类问题可通过“换元”化为二次函数的最值问题。但要注意换元后变量的范围。解:函数 可化为 设 ,所以 因为 ,所以图象开口向上又对称轴方程为 ,所以当 时函数取得最小值为 ;当 时函数取得最大值为 。例题5:已知等比数列 中, ,求公比 。分析:数列问题主要是等差、等比数列的定义、性质、通项公式和前 项和公式的应用。本题因为没有具体的已知要求公比,所以可以考虑用定义求解。解:因为 ,所以 ,从而
4、 ,所以 ,故 。例题6:已知等差数列 中, ,求公差 和首项 。分析:由通项公式与前 项和公式的关系易求首项 ,只要再求得第二项 即可求公差。解:由 得 又 得 所以 但 ,若 ,则 矛盾故所求的 。例题7:过点 作直线 ,交 轴的正半轴于A,交 轴正半轴于B,O为原点,求使 面积最小的直线 的方程。分析:求直线方程用固有方程形式采用待定系数法。因为已知直线过的点坐标,所以一般选用点斜式求解。解:设直线 的方程为: ,则因为直线只与 轴, 轴正半轴相交,所以 令 得 ,令 得 所以 所以当 时 面积最小,这时直线 的方程为: 。例题8:求以椭圆 的右焦点为焦点,以双曲线 的左准线为准线的抛物线方程。并求过此抛物线的焦点,倾斜角为 的抛物线的弦长。分析:求圆锥曲线方程的基本方法:定位和定量。解:(1)椭圆 中, ,所以右焦点为 双曲线 中, ,所以左准线为 故所求抛物线的焦点为 ,准线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒品安全保障研究
- 2024至2030年移动带式磁选机项目投资价值分析报告
- 2024-2030年中国建筑检测行业发展前景预测及投资模式分析报告
- 2024-2030年中国工业旅游行业运作模式分析及未来发展规划研究报告
- 2024-2030年中国小金属行业供需趋势发展规划分析报告
- 2024-2030年中国家用护理超声波美容仪市场销售渠道及营销趋势预测报告
- 2024-2030年中国定制酒行业市场发展趋势及销售模式分析报告
- 橡胶制品的质量检测与质量标准考核试卷
- 2024至2030年中国不锈钢旋塞阀行业投资前景及策略咨询研究报告
- 2024年矩阵切换系统项目可行性研究报告
- 花卉园艺师国家职业标准
- 中学体育对接竞技体育后备人才的路径构建
- 《观察课—桔子》(课堂PPT)
- 汉德车桥明细爆炸图20__14
- 完整版幸福感指数测量量表
- 管理-制度万科房地产应收帐款管理办法
- 5w1h分析法讲义ppt课件
- 动稳定和热稳定的计算
- 上海市高等学校依法治校创建指标体系
- 组织架构图PPT课件
- 技工英语教案(共46页)
评论
0/150
提交评论