版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、5.4平面向量的坐标运算,引入,1.平面内建立了直角坐标系,点A可以用什么来 表示,2.平面向量是否也有类似的表示呢,A,a,b,a,b,3.复习平面向量基本定理,如果 e1 , e2是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量 a ,有且只有一对实数 1 , 2 使得a= 1 e1+ 2 e2,不共线的两向量 e1 , e2 叫做这一平面内所有向量的一组基底,什么叫平面的一组基底,平面的基底有多少组,无数组,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,1)取基底: 与x轴方向,y轴方向相同的两个单位向量i、j作为基底,式叫做向量的坐标表示,注:每个向量都有唯一的坐标,
2、一)平面向量坐标的概念,在直角坐标系内,我们分别,例1.用基底 i , j 分别表示向量a,b,c,d,并求出它们的坐标,4 -3 -2 -1 1 2 3 4,A,B,1,2,2,1,x,y,问 1 :设 的坐标与 的坐标有何关系,4,5,3,若 则,问2:什么时候向量的坐标和点的坐标统一起来,问 1 :设 的坐标与 的坐标有何关系,问3:相等向量的坐标有什么关系,1,A,B,1,x,y,A1,B1,x1,y1,x2,y2,P(x,y,结论1:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标,向量的坐标与点的坐标关系,小结:对向量坐标表示的理解,1)任一平面向量都有唯一的坐标,2
3、)向量的坐标等于终点坐标减去起点坐标;当向量的起点在原点时,向量终点的坐标即为向量的坐标,3)相等的向量有相等的坐标,练习:在同一直角坐标系内画出下列向量,解,二)平面向量的坐标运算,结论2:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差,结论3:实数与向量数量积的坐标等于用这个实数乘原来向量的相应坐标,已知 ,求 的坐标,O,x,y,B(x2,y2,A(x1,y1,结论1:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标,从向量运算的角度,解:由题设,得:(3, 4)+ (2, 5)+(x, y)=(0, 0) 即,例5:已知平行四边形ABCD的三个顶点A、B、C的坐标
4、分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标,x,y,O,A(-2,1,B(-1,3,C(3,4,D(x,y,例5:已知平行四边形ABCD的三个顶点的坐标分别是(- 2,1)、(- 1,3)、(3,4),求顶点D的坐标,变式: 已知平面上三点的坐标分别为A(2, 1), B(1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点,A,B,C,解:当平行四边形为ADCB时, 由 得D1=(2, 2,当平行四边形为ACDB时, 得D2=(4, 6,当平行四边形为DACB时, 得D3=(6, 0,课堂总结,1.向量的坐标的概念,2.对向量坐标表示的理解,3.平面向量的坐标运算,1)任一平面向量都有唯一的坐标,2)向量的坐标与其起点、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第32讲锐角三角函数及其应用(讲义)(原卷版)
- 624届二模化学试题答案
- 2019年高考历史人民版一轮复习练案7辛亥革命
- 高中英语人教版必修3Unit4Astronomythescienceofthestarsperiod5测试(学生版)
- 安全教育主题班会教案
- MTP管理培训闫高峰老师-20211101100801
- 2023-2024学年全国小学四年级上英语人教版期中试卷(含答案解析)
- 第1章-非平衡态热力学4
- 2024年沈阳经营性道路旅客运输驾驶员从业资格考试题库
- 2024年酒店会务合同协议书
- 中国的时尚与时尚产业
- 炊事基础理论知识
- 颅内占位性的病变护理查房课件
- 山东省烟台市芝罘区(五四制)2023-2024学年九年级上学期期末考试物理试题
- 女职工权益维护知识讲座
- DB14∕T 1851-2019 中华鼢鼠防治技术规程
- 2024年风电铸件行业市场研究报告
- 初中英语教学中的情景教学方法
- 中耳胆脂瘤的护理查房
- 高空作业安全防护措施与操作规程
- 财务科廉洁风险点及防控措施【15篇】
评论
0/150
提交评论