版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、迴歸分析的例子,黃熾森 香港中文大學管理學系教授 地址: 香港新界沙田香港中文大學管理學系 電郵:.hk 2006年3月,大綱,迴歸分析及其統計測試原理 虛擬變項(Dummy Variable)的運用 增加效度(Incremental Validity) 調節變項(Moderator)的測試 中介變項(Mediator)的測試 應用迴歸分析時要注意的重點 討論幾個應用迴歸分析的研究例子,迴歸分析的數學方程,自變項與依變項成線性關係(Linear Relationship),假如X1及X2(即自變項;Independent Variables)是
2、Y(即依變項;Dependent Variable)的原因,那麼它們的關係可用以下方程式代表: Y = 0 + 1X1 + 2X2 + 其中: (1) 0為一常數; (2) 1代表了如果X1改變了一個單位,Y會改變的程度; (3) 2代表了如果X2改變了一個單位,Y會改變的程度; (4) 代表了隨機的誤差,變異量的角度:最簡單的情況,最簡單的情況: 1和2是獨立的,如果A佔Y的總變異量的比重愈高,那麼1便會愈大,反映X1對Y的影響愈大; 如果B佔Y的總變異量的比重愈高,那麼2便會愈大,反映X2對Y的影響愈大。 而C則是代表了X1及X2無法影響Y的部分,也就是的變異量了。因此C佔Y的總變異量的比
3、重愈高,以X1及X2來預測或解釋Y的變異情況的能力便愈差。 A和B的部分是沒有關係的,那就是說1和2是獨立的,不會互相影響,變異量的角度:更常見的情形,常見的情形: 1和2不是獨立的,如果我們假設這個圖中C佔Y的總變異量與之前的圖一樣,那麼,X1及X2對預測或解釋Y的變異情況的能力也會與之前的圖一樣(即A+B=a+b+D) 1和2不是獨立的,它們會互相影響,因為如果我們不考慮X2, 1便會較大;同樣地,因為如果我們不考慮X1, 2便會較大。 這一點對我們了解真實的現象是很重要的,因為如果在真實的現象中,X1及X2都同時存在而對Y有所影響,但我們的理論卻沒有考慮X1及X2都同時存在的情形,那麼我
4、們的理論便不能正確地描述這些自變項和依變項的關係了,迴歸分析的原理,迴歸分析的原理是同時(simultaneously)考慮不同自變項對某一依變項的影響,兩點是很重要的: (1)整體而言,這些自變項對依變項的預測或解釋能力有多大,即的變異量佔Y的總變異量的大小,如果愈小,則預測或解釋能力愈高; (2)在同時考慮了所有自變項的情況下,個別自變項對依變項的影響,因此,我們可作出這樣的結論:在其他因素不變的情況下,這個自變項(例如X1)對依變項(例如Y)的影響是當X1改變一個單位時,Y會改變1的單位(Given other things equal, Y will change by 1 unit
5、when X1 changes one unit,迴歸分析的統計數和參數,R2 , b0及bi的計算,因為我們是要以自變項來預測或解釋依變項,因此,在樣本的數據中,我們是找出一組b0及bi的數值使e的變異量最小的,然後用這一組的R2及bi來作統計測試(Hypothesis testing,R2 的統計測試,證整體而言,自變項對依變項的預測或解釋能力是否存在: (1)設立保守假設,即在母體中自變項對依變項沒有影響,所有自變項與依變項均無共變量,即母體的1 (的變異量)/(Y的變異量) 等於零。 (2)抽取樣本、測量各自變項及依變項,以取得數據計算R2 ; (3)計算在保守假設正確時,我們會看到這
6、個樣本的R2的機會有多大(即P值;P value); (4)根據P值判斷是否要推翻原來保守的假設,i 的統計測試,在其他因素不變的情況下,各自變頂對依變項的影響。我們以X1為例: (1)設立保守假設,即在母體中X1對Y沒有影響,所以1等於零; (2)抽取樣本、測量各自變項及依變項,以取得數據計算b1; (3)計算在保守假設正確時(即1等於零),我們會看到這個樣本的b1的機會有多大(即P值;P value); (4)根據P值判斷是否要推翻原來保守的假設,虛擬變項的需要,由於我們以: Y = 0 + 1X1 + 2X2 + 這樣的方程式來代表X1、X2及Y的關係,事實上我們已經假設了X1、X2及Y
7、最起碼是等距尺度的了,否則數學上無法運算,類別尺度的虛擬變項,例如X2是性別,那麼我們可創造一個新的虛擬變項(D)代替,當回應者是男性時,把D設定為1,而當回應者是女性時,把D設定為0,這樣一來,迴歸的方程式是: Y = 0 + 1 X1 + 2D + 。 (1) 當D等於1時,變成:Y = 0 + 1X1 + 2 + ; (2) 當D等於0時,變成:Y = 0 + 1X1 + 。 如果在統計測試中我們的結論是2等於零時,便代表男性和女性在預測或解釋Y方面沒有作用,因為無論回應者是男性還是女性,我們接受的結論均為: Y = 0 + 1X1 + 。 所以,以虛擬變項(D)代表性別後,我們便可以如
8、常地進行迴歸分析,依變項的虛擬變項,假如依變項(Y)是類別尺度測量及分為兩類的,我們仍可設立虛擬變項,進行特別的迴歸分析,稱為Logistic Regression。 例如:離職(Turnover)的研究,多於兩個類別的虛擬變項,假如X2是多於兩個類別,例如是公司的種類:國營企業(SOE)、中外合資企業(JV)、外資獨資企業(WOFE) ,這樣我們便要創造兩個新的虛擬變項(D1及D2)來代替這變項。 例如當企業是SOE時,把D1設定為1,而其他企業則把D1設定為0;當企業是JV時,把D2設定為1,而其他企業則把D2設定為0。 我們的迴歸方程式便是: Y = 0 + 1 X1 + 2D1 + 3
9、D2 + 如果在統計測試中我們的結論是2及3均等於零時,則代表企業類別對預測或解釋Y方面沒有用。 如果自變項的類別數目為n時,我們祗要設定(n-1)個虛擬變項,便可進行迴歸分析以測試此自變項對依變項的影響,增加效度的測試,增加效度(Incremental validity):即某一自變項在考慮了已知其他對依變項有影響的自變項後,仍對依變項有影響。 有些理論也可能描述了各自變項對依變項的影響是一個(或一類)接一個(或一類)的 我們不能單靠R2及bi的測試來驗證這些理論的正確性,而要用Hierarchical Regression的方法,Hierarchical Regression的測試-1,如
10、我們要驗證X2是否在X1之上,對Y仍有預測及解釋能力,我們可比較以下兩個方程式: (1) Y = 01 + 11X1 + 1 (2) Y = 02 + 12X1 + 2X2 + 2 如果第二個方程式對Y的預測及解釋能力較第一個方程式為高,那麼我們便可以說X2是在X1之上,對Y仍有預測及解釋能力。在樣本的數據中,我們便是比較兩個方程式的R2的分別(稱為delta R-square;R2,Hierarchical Regression的測試-2,1)設立保守假設,即在母體中兩個方程式對Y的預測及解釋能力沒有分別,即兩個方程式的 1 (的變異量)/(Y的變異量) 是一樣的。 (2)抽取樣本、測量各自
11、變項及依變項,以取得數據計算兩個方程的R2及R2; (3)計算在保守假設正確時,我們會看到這個樣本的R2的機會有多大(即P值;P value); (4)根據P值判斷是否要推翻原來保守的假設,調節變項的測試 -1,在迴歸分析中我們可用交互變項(Interaction term)來驗證調節變項。所謂交互變項,就是兩個可能是調節變項相乘的積(Cross-product term), 例如我們要驗證X2是否在X1和Y的關係中,擔當了調節的作用,我們可先計算X1及X2相乘的積(X1*X2)。我們可用Hierarchical Regression 的測試方法,比較以下兩個方程式: (1) Y = 0 +
12、1X1 + 2X2 + 1 (2) Y = 0 + 1X1 + 2X2 + 3(X1*X2) + 2 如果我們的結論是接受第二個方程式,即在R2的測試中我們推翻它等於零的保守假設,便等於承認了X2在X1和Y的關係中擔當了調節的作用,調節變項的測試 -2,我們說當X2不變時,而X1增加了一個單位,那麼Y的改變(Y)會是: (1) Y1 = 0 + 1X1 + 2X2 + 3(X1*X2) + (2) Y2 = 0 + 1(X1+1) + 2X2 + 3【(X1+1)*X2】+ Y = Y2 Y1 = 1 + 3X2 明顯地,由X1的改變而帶來對Y的轉變,仍要視乎X2實際的數值而定,調節變項的測試
13、 -3,在檢定了調節變項後,如有需要,我們應以圖示其實際的調節形態,由迴歸分析的結果如何繪圖來表示調節的形態,可參看Aiken and West (1991) 。 如果我們要測試更高層次的交互作用,例如三個自變項(X1、X2及X3)的交互作用,也是以層級迴歸咎於Hierarchical Regression) 的測試方法,檢定加入了調節變項相乘的積(即X1*X2*X3)後的R2。 唯一要注意的是,在最後加入X1*X2*X3之前,我們需先把所有較低層次的交互作用(即X1*X2、X1*X3、X2*X3)包括在迴歸分析中,可參看Aiken and West (1991,中介變項,中介變項(Media
14、tor)的意思,就是說自變項對依變項的影響是透過中介變項的,如果M真的是X和Y的中介變項,那麼,它們的關係應該是:XMY。這裡有三個因果關係的條件: X是M的原因之一; X是Y的原因之一; X對Y的影響是透過M的,中介變項的證據-1,在對樣本的迴歸的分析中,我們應該看到以下的結果(Judd & Kenny, 1981;Baron and Kenny, 1986): (1) X = b01 + b11M + e1 (2) Y = b02 + b21X + e2 (3) Y = b03 + b31X + b32M + e3 在第一個方程式中,以b11來測試M和X的關係,結論應是:11不等於零。在第
15、二個方程式中,以b21來測試X和Y的關係,結論應是:21不等於零。在第三個方程式中,是以b31和b32來測試當M被同時考慮時,X對Y的影響,最理想的結論是:31等於零,但32不等於零。 如果這三個條件都符合,我們的結論便會是:M是X和Y的中介變項,中介變項的證據-2,有些時候,雖然第一個和第二個方程式的結論都得到支持,但在第三個方程式中我們的結論是31和32都不等於零,這樣我們便要看b21和b31的分別,或者是第二和第三個方程式的R2分別了。基本上,如果M是X和Y的中介變項,那麼這些分別應該是頗大的。 (MacKinnon, Lockwood, Hoffman, West, & Sheets
16、(2002)有很詳細的總結。,應用迴歸分析時要注意的重點,1) 自變項與依變項的因果關係。 (2) 自變項與依變項的測量尺度。 (3) 控制變項。 (4) 線性關係的設定。 (5) 測量的誤差。 (6) 數據方面的要求:例如應該是隨機和常態分佈的;當各自變項互相的共變量很大,bi便會很不穩定,使我們難以判斷最終對依變項的影響到底是來自那一個自變項,這問題稱為多線性問題(multicollinearity),例子一:Law, Wong and Wang (2004)(1) 研究問題(Research Question)-1,這個研究要探討的是在中國,跨國企業(Transnational Corp
17、orations;TNC)要本土化(localization)其中高層員工(即以本地員工取代從國外派駐的員工),其成功的因素是否有一個層次,順序為:(1)企業視本土化為重要目標;(2)本土化的計劃週詳程度;(3)與本土化相關的人力資源管理措施的落實程度,1) 研究問題(Research Question)-2,H1: The extent to which localization is regarded as an important goal of the TNC is positively related to localization success. H2: Localization
18、 planning efforts such as top management commitment to localization and selection of appropriate expatriates are positively related to localization success. H3: Specific human resource practices favoring the implementation of localization plans (training opportunities for local managers, performance
19、 evaluation and rewards for expatriates and local managers, and repatriation arrangements) are positively related to localization success. H4: The TNCs localization planning efforts would explain variation in localization success over and beyond that of setting localization as an important objective
20、. H5: The TNCs localizarion-related human resources management practices would explain variation in localization success over and beyond that of setting localization as an important objective and localization planning efforts,測量變項的方法-1,Final participants in our validation sample were 139 human resou
21、rces managers of TNCs operating in Fujian Province in the PRC. We chose TNCs from one single province in order to control for the differences in governmental regulations. With the help of this professor in Xiamen, we sent out 180 questionnaires to current and graduated MBA students who are top or mi
22、ddle-level managers in TNCs in Fujian Province. These managers were asked to fill out the questionnaires themselves if they were the human resources manager of the company. They were asked to refer to their human resources manager for necessary information if they were top executives of the company.
23、 After distributing the questionnaires and one round of telephone follow-up, a total of 139 responses were received,測量變項的方法-2,Subjective, multiple item measures with a development sample Objective indicator of localization success. In addition to the four subjective questions, we added an objective
24、indicator of localization success. Specifically, we used a ratio of the “Number of local managers occupying positions originally occupied by expatriates” to the “Total number of positions occupied by expatriates when the PRC operations started.” The numerator is a measure of actual localization succ
25、ess, while the denominator is a comparison base of the starting number of expatriate positions. This variable is very important because it allows us to double check the validity of the subjective indicator of localization success. Also, unless the respondents deliberately lied to us, this objective
26、indicator can be a good dependent variable that has little respondents biases with the independent variables. Control Variables, e.g., dummy coded organizational type,3) 迴歸分析-1,由於要檢定各組自變項的順序層次,所以迴歸的方式是Hierarchical Regression: In order to have a more rigorous test of the five hypotheses in this study
27、, we used hierarchical regression analyses to identify the important determinants of localization success. Results of these analyses are shown in Table 2. Table 2 shows that the inclusion of the three controlling variables (i.e., YEAR, MANUFACTURING, and JV) is necessary because they have significan
28、t effects on the localization success. Changes in R2 are .16 (p.05) and .13 (p.01) respectively for the objective and subjective indicator of localization success,3) 迴歸分析-2,As expected, localization objectives (i.e., GOAL) explained a significant portion of variance in the localization result. The i
29、ncrease in model R2 for in predicting the objective and subjective success of localization were .20 (p.01) and .18 (p.01) respectively. Planning efforts for localization explained an additional significant portion of the variance of localization results on top of localization objectives. The changes
30、 in R2 for the objective and subjective success of localization measures were .13 (p.01) and .10 (p.01) respectively. Thus, H4 is supported. Human resources practices related to localization further explained a significant portion of the variances of the dependent variables. The change in model R2 f
31、or the objective and subjective success of localization measures as dependent variables were .07 (p.10) and .08 (p.05) respectively. Thus, H5 is supported,例子二:Wong, Wong and Law (2005) (1) 研究問題(Research Question,這個研究要探討的問題是:(1)工作對情緒表現的要求(Emotional Labor;EL)是否會成為情緒智能(Emotional Intelligence;EI)與工作滿足感(
32、Job Satisfaction)的調節變項;(2)傳統廣為接受的職業分類模型(Hollands Model)是否可代表工作對情緒表現的要求: Hypothesis 1. EI is positively related to life satisfaction. Hypothesis 2. EI is positively related to job satisfaction. Hypothesis 3. The effect of EI on job satisfaction is dependent on the EL of the job. Specifically, the hig
33、her the EL of the job, the stronger would be the effects of EI on job satisfaction. Hypothesis 4. Following Hollands model of vocational choice, the effects of EI on job satisfaction would be highest for social types of jobs. The effect sizes of the EI-job satisfaction relationship for different typ
34、es of jobs follow Hollands calculus assumption. Hypothesis 5. The effects of EI on life satisfaction are independent of the EL of the job,2) 測量變項的方法-1,The sample of this study came from two sources. The first source is union members of five types of job. The five jobs included bus driver (realistic)
35、, computer programmer (investigative), art designer of advertising companies (artistic), shop manager of retailing shops (enterprising), and clerks (conventional). A total of 300 questionnaires were given to the union and 218 valid responses were returned, representing a response rate of 72.7%. Howe
36、ver, since there are no social jobs in the union, our second sample source was teachers of two secondary schools. One hundred and ten questionnaires were sent to all the teachers of two schools and 89 valid responses were returned, representing a response rate of 80.9%. Thus, the final sample consis
37、ted of 307 respondents (46 bus drivers, 103 clerks, 17 computer programmers, 9 art designers, 43 shop managers, and 89 secondary school teachers,2) 測量變項的方法-2,Proxy of emotional labor by Hollands occupational model. To test the importance of EI in various occupational types, we created a second proxy
38、 measure of emotional labor according to Hollands (RIASEC) model. As argued before, social type of jobs would probably have the highest level of emotional labor because these jobs have the greatest requirement of social interaction. Following the calculus assumption of Hollands (RIASEC) model, the o
39、rder of emotional labor will thus be social, its adjacent types (i.e., artistic and enterprising), its alternative types (i.e., investigative and conventional), and its opposite type (i.e., realistic). Thus, this proxy measure of emotional labor was coded as follows: the social type (i.e., secondary
40、 school teachers) was coded as 4, its adjacent types (i.e., art designers and shop mangers) were coded as 3, the alternate types (i.e., computer programmers and clerks) were coded as 2, and the opposite type (i.e., bus drivers) was coded as 1,3) 迴歸分析,Hierarchical regression was conducted to test the main effect of EI and the interaction effect between EI and emotional labor on job satisfac
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度网络安全风险评估与解决方案合同范本3篇
- 二零二五版股权激励合同:某上市公司对高级管理人员股权激励计划3篇
- 2025年度时尚服饰店开业活动承包合同3篇
- 2025年度高端不锈钢医疗器械制造委托合同3篇
- 二零二五版智能穿戴设备代加工合同范本2篇
- 二零二五年度环保型车间生产承包服务合同范本3篇
- 二零二五年高管子女教育援助与扶持合同3篇
- 2025年草场租赁与牧区基础设施建设合同3篇
- 二零二五版涵洞工程劳务分包单价及工期延误赔偿合同3篇
- 二零二五版财务报表编制会计劳动合同范本3篇
- GB/T 34241-2017卷式聚酰胺复合反渗透膜元件
- GB/T 12494-1990食品机械专用白油
- 运输供应商年度评价表
- 成熙高级英语听力脚本
- 北京语言大学保卫处管理岗位工作人员招考聘用【共500题附答案解析】模拟试卷
- 肺癌的诊治指南课件
- 人教版七年级下册数学全册完整版课件
- 商场装修改造施工组织设计
- 统编版一年级语文上册 第5单元教材解读 PPT
- 加减乘除混合运算600题直接打印
- ASCO7000系列GROUP5控制盘使用手册
评论
0/150
提交评论