泊松过程的生成及其统计分析_第1页
泊松过程的生成及其统计分析_第2页
泊松过程的生成及其统计分析_第3页
泊松过程的生成及其统计分析_第4页
泊松过程的生成及其统计分析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、泊松过程的生成及其统计分析实验报告班级:硕2035班 姓名:吕奇学号: 一、实验题目假设一个交换系统有M部电话,每个用户在很短的时间(单位时间内)呼叫一次的概率为P;用户间呼入的时刻相互独立,当M很大,P很小时,时间t内到达交换机的呼叫次数构成泊松过程N(t)。1、 确定此泊松过程的参数。2、 利用计算机仿真N(t)的生成过程。注意合理选择M和P,时间分辨率为一个单位时间。3、 为了比较生成的N(t)与理论模型的吻合程度。取N(t)的多个样本并选取3个典型时间,,得到,三个随机变量的样本,在一张图上画出其直方图及理论分布曲线,并将两者对照。比较M选取不同时的效果。注意:样本个数足够多。4、 验

2、证N(t)的增量平稳性。5、 画出任意相邻两次呼叫间隔的直方图,和理论值进行对照。验证其与其它相邻两次呼叫间隔随机变量的独立性。二、实验过程1、确定此泊松过程的参数由题目容易知道,在很短的时间内M个用户的呼叫一次的概率为MP,而由定义知道,时间内到达交换机的呼叫一次的概率为,故有 (1)从而有。2、利用计算机仿真N(t)的生成过程对每个用户,在时间内呼叫一次的概率P很小,可以用rand函数生成一组0,1的随机数,当随机数小于P时,则认为有呼叫,将其置为1,否则认为没有呼叫,置为0;有M部电话,则生成M组0,1的随机数,对每组随机数用上诉方法得到一个只有0和1的逻辑矩阵,用来表示某一时刻是否有呼

3、叫。下面是,M=3000,总时间为T=5的实验结果:图1 N(t)的生成结果可以看到呼叫的计数过程,是递增的,并且可以计算,时间T=5内呼叫总次数平均为,多次时间结果最后的呼叫次数都在15次左右。程序:clcclearclose allp=10(-6);M=3000;dt=0.001;T=5;x=rand(M,T/dt);y=;for i=1:M for j=1:T/dt if x(i,j)p x(i,j)=1; else x(i,j)=0; end endendy=(sum(x)=0);m=;m(1)=0;for i=1:T/dt m(i+1)=m(i)+y(i);endt=1:T/dt+1

4、;t=t*dt;plot(t,m)此外,matlab中还有二项分布生成函数binornd,可以用x=binornd(1,p,M,T/dt)代替中间的两个for循环,这个函数的功能是对一个发生概率为P的事件随机试验一次,若发生置为1,不发生置为0,此实验要对M个电话实验T/dt次,故生成的是M行,T/dt的矩阵,运行结果是一样的。3、比较生成的N(t)与理论模型的吻合程度(1),的统计直方图和理论分布曲线下面是,M=3000,总时间为T=1.2,选取时间t1=0.3,t2=0.6,t3=0.9作2000次试验统计的实验结果:图2 ,的统计直方图和理论分布曲线在图2中,圆圈代表的统计直方图,正方形

5、代表的统计直方图,五角星代表的直方图。从图中可以看出,虽然有较小的误差,但是生成的N(t)和理论模型还是基本吻合的。程序中主要用到了直方图统计函数hist,生成max(Nt1)-min(Nt1)个直方条间的间隔刚好是1,此时的坐标分别为0.5、1.5、2.5,并且0.5的直方条包括了0次呼叫和1次呼叫的的概率,1.5、2.5、3.5等等依次代表的是2次、3次、4次呼叫的概率,因而有了程序中的相关修正。程序:clcclearclose allp=5*10(-6);M=3000;dt=0.003;a=M*p/dt;T=1.2; loop=2000;t1=0.3;t2=0.6;t3=0.9;for

6、k=1:loop %作loop次试验 x=rand(M,T/dt); for i=1:M for j=1:T/dt if x(i,j)p x(i,j)=1; else x(i,j)=0; end end end tt=dt*find(sum(x)=0)=1); %每次试验各个呼叫发生的时刻 Nt1(k)=sum(ttt1); %每次试验在时间(0,t1)内呼叫的次数 Nt2(k)=sum(ttt2); Nt3(k)=sum(ttt3);endN1,index1=hist(Nt1,max(Nt1)-min(Nt1); %(0,t1)内呼叫次数的统计直方图N2,index2=hist(Nt2,ma

7、x(Nt2)-min(Nt2);N3,index3=hist(Nt3,max(Nt3)-min(Nt3);index1=min(Nt1),index1+0.5; %作相关修正index2=min(Nt2),index2+0.5;index3=min(Nt3),index3+0.5;N1=sum(Nt1=min(Nt1),N1(1)-sum(Nt1=min(Nt1),N1(2:end);N2=sum(Nt2=min(Nt2),N2(1)-sum(Nt2=min(Nt2),N2(2:end);N3=sum(Nt3=min(Nt3),N3(1)-sum(Nt3=min(Nt3),N3(2:end);

8、p1=;p2=;p3=;for k=1:length(index1) p1=p1,(a*t1)index1(k)*exp(-a*t1)/factorial(index1(k); %理论值endfor k=1:length(index2) p2=p2,(a*t2)index2(k)*exp(-a*t2)/factorial(index2(k);endfor k=1:length(index3) p3=p3,(a*t3)index3(k)*exp(-a*t3)/factorial(index3(k);endstem(index1,N1/loop,r);hold onplot(index1,p1,r

9、)hold on stem(index2,N2/loop,bs);hold onplot(index2,p2,b)hold on stem(index3,N3/loop,gp);hold onplot(index3,p3,g)hold on(2)比较M不同时的实验效果 对于上面的参数,我们选择t2时刻,M分别取1000、2000、3000得到的统计直方图如图3所示,圆形对应的是M=1000,正方形对应的是M=2000,五角星对应的是M=3000,从图3中可以看到,当M值增大时,直方图和;理论曲线都往右移动,从理论上分析,在P和不变时,M值越大,强度常数越大,相同时间内呼叫的次数更多,所以在呼叫

10、次数多的地方概率更大,曲线往右移动。图3 M不同时的实验效果对比4、验证N(t)的增量平稳性 增量平稳性数学表示为,对任何s和t,PN(s+t)-N(s)=n=PN(t)=n,即在相同时间内呼叫n次的概率相等。下图是取了三个相等的时间间隔进行的呼叫次数的直方图统计结果:图4 增量平稳性验证曲线由于只需要相同时间内呼叫相同次数的概率相同,为了简化程序和计算量,在直方图统计中没有对第一个直方条进行修正,并不影响实验的结论,从图4中可以看到,三个相等的时间间隔呼叫次数的概率分布曲线基本重合,说明相同时间间隔内呼叫次数相同的概率基本相同,从而验证了增量平稳性。程序:clcclearclose allp

11、=5*10(-6);M=3000;dt=0.003;T=1.8;loop=2000;for k=1:loop x=rand(M,T/dt); for i=1:M for j=1:T/dt if x(i,j)p x(i,j)=1; else x(i,j)=0; end end end y=(sum(x)=0); m=; m(1)=0; for i=1:T/dt m(i+1)=m(i)+y(i); end Nt1(k)=m(201)-m(1); Nt2(k)=m(401)-m(201); Nt3(k)=m(601)-m(401);endN1,index1=hist(Nt1,max(Nt1)-min

12、(Nt1);N2,index2=hist(Nt2,max(Nt2)-min(Nt2);N3,index3=hist(Nt3,max(Nt3)-min(Nt3);plot(index1,N1/loop,r);hold on;plot(index2,N2/loop,b);hold on;plot(index3,N3/loop,g);hold on;5、(1)画出任意相邻两次呼叫间隔的直方图,和理论值进行对照。由理论可知,任意两次的呼叫间隔的概率分布函数为负指数分布:, 下面是,M=3000,总时间为T=3,选取第二次和第一次呼叫的时间间隔得到的统计实验结果:图5 呼叫时间间隔分布直方图从图5中可以

13、看出,相邻两次呼叫间隔满足负指数分布,与理论相符。编程时,将时间间隔平均分在50个直方条中,在求理论值时,需要对负指数型概率密度函数在每个直方条中求积分,需要注意的是积分的区间。程序:clcclearclose allp=5*10(-6);M=3000;dt=0.003;a=M*p/dt;T=3;loop=3000; for k=1:loop x=rand(M,T/dt); for i=1:M for j=1:T/dt if x(i,j)p x(i,j)=1; else x(i,j)=0; end end end y=sum(x)=0; tt=dt*find(y=1);% for i=1:le

14、ngth(tt)-1% b(i)=tt(i+1)-tt(i);% end b(k)=tt(2)-tt(1); c(k)=tt(4)-tt(3);end N1,index1=hist(b,50);dh=(max(b)-min(b)/100; stem(index1,N1/loop,r);hold onfor i=1:50 t=(index1(i)-dh):0.001:(index1(i)+dh); l=a*exp(-a*t); q(i)=trapz(t,l);endplot(index1,q)Eb=sum(b)/length(b);Ec=sum(c)/length(c);Ebc=sum(b.*c)/length(b);Db=sum(b.*b)/length(b)-Eb2;Dc=sum(c.*c)/length(c)-Ec2;Covbc=Ebc-Eb*Ec;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论