



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、异面直线所成角的几种求法 异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。 一、向量法求异面直线所成的角例1:如图,在正方体ABCD-A1B1C1D1中,E、F分别是相邻两侧面BCC1B1及CDD1C1的中心。求A1E和B1F所成的角的大小。BACDFEB1A1D1C1GHSRPQ解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平
2、移两条直线到某个点上。作法:连结B1E,取B1E中点G及A1B1中点H,连结GH,有GH/A1E。过F作CD的平行线RS,分别交CC1、DD1于点R、S,连结SH,连结GS。由B1H/C1D1/FS,B1H=FS,可得B1F/SH。在GHS中,设正方体边长为a。GH=a(作直线GQ/BC交BB1于点Q,连QH,可知GQH为直角三角形),HS=a(连A1S,可知HA1S为直角三角形),BACDFEB1A1D1C1GS=a(作直线GP交BC于点P,连PD,可知四边形GPDS为直角梯形)。CosGHS=。所以直线A1E与直线B1F所成的角的余弦值为。解法二:(向量法)分析:因为给出的立体图形是一个正
3、方体,所以可以在空间建立直角坐标系,从而可以利用点的坐标表示出空间中每一个向量,从而可以用向量的方法来求出两条直线间的夹角。以B为原点,BC为x轴,BA为y轴,BB1为z轴,设BC长度为2。则点A1的坐标为(0,2,2),点E的坐标为(1,0,1),点B1的坐标为(0,0,2),点F的坐标为(2,1,1);所以向量的坐标为(-1,2,1),向量的坐标为(2,1,-1),所以这两个向量的夹角满足cos=-。所以直线A1E与直线B1F所成的角的余弦值为小结:上述解法中,解法一要求有良好的作图能力,且能够在作图完毕后能够看清楚图形中的各个三角形,然后在所需要的三角形中计算出各条线段的长度,从而完成解
4、三角形得到角的大小。而解法二不需要学生作图,只需建立空间直角坐标系,标出相应的点的坐标,从而得到所需向量的坐标,求出两个向量的夹角,即所求的两条直线所成的角。当然,如果题中给出的是一可以建立坐标系的空间图形,比如刚才的正方体,或者说是长方体,或者说空间图形中拥有三条直线两两垂直的性质,我们就可以建立空间直角坐标系,从而利用向量的坐标表示来求两个向量的夹角。如果没有这样的性质,我们也可以利用空间向量基本定理,寻找空间的一组基底(即三个不共面的向量,且这三个向量两两之间的夹角是已知的),空间中任何一个向量都可以用这三个向量的线性组合表示出来,因而也可以运用向量的数乘来求出空间中任意二个向量间的夹角
5、。ABCDMN例2:已知空间四边形ABCD中,AB=BC=CD=DA=AC=BD=a,M、N分别为BC和AD的中点,设AM和CN所成的角为,求cos的值。解:由已知得,空间向量,不共面,且两两之间的夹角均为60。由向量的加法可以得到=(+),=+所以向量与向量的夹角(即角或者的补角)满足cos=,其中=(+)(+)=(+()+)=a2(+1)=a2;|2=(+)(+)=(1+1+1)a2= a2;|2=(+)(+)=+1 a2= a2。所以cos=| cos|=。例3:已知空间四边形ABCD中,AB=CD=3,E、F分别是BC、AD上的点,ABCDEFG且BE:EC=AF:FD=1:2,EF=
6、,求AB和CD所成的角的大小。解:取AC上点G,使AG:GC=1:2。连结EG、FG,可知EG/AB,FG/CD,3EG=2AB,3FG=CD。由向量的知识可知=+=+,设向量和的夹角为。则由|2=(+)(+)=4+1+4cos=7,得cos=,所以AB和CD所成的角为60。二、利用模型求异面直线所成的角引理:已知平面的一条斜线a与平面所成的角为1,平面内的一条直线b与斜线a所成的角为,与它的射影a所成的角为2。求证:cos= cos1cos2。PbABO证明:设PA是的斜线,OA是PA在上的射影,OB/b,如图所示。则PAO=1,PAB=,OAB=2,过点O在平面内作OBAB,垂足为B,连结
7、PB。可知PBAB。所以cos1=, cos=,cos2=。所以cos= cos1cos2。这一问题中,直线a和b可以是相交直线,也可以是异面直线。我们不妨把1叫做线面角,叫做线线角,2叫做线影角。很明显,线线角是这三个角中最大的一个角。我们可以利用这个模型来求两条异面直线a和b所成的角,即引理中的角。从引理中可以看出,我们需要过a的一个平面,以及该平面的一条斜线b以及b在内的射影。ABCDM例4:如图,MA平面ABCD,四边形ABCD是正方形,且MA=AB=a,试求异面直线MB与AC所成的角。解:由图可知,直线MB在平面ABCD内的射影为AB,直线MB与平面ABCD所成的角为45,直线AC与
8、直线MB的射影AB所成的角为45,所以直线AC与直MB所成的角为,满足cos=cos45 cos45=,所以直线AC与MB所成的角为60。PEDFABC例5:如图,在立体图形P-ABCD中,底面ABCD是一个直角梯形,BAD=90,AD/BC,AB=BC=a,AD=2a,且PA底面ABCD,PD与底面成30角,AEPD于D。求异面直线AE与CD所成的角的大小。解:过E作的平行线EF交AD于F,由PA底面ABCD可知,直线AE在平面ABCD内的射影为AD,直线AE与平面ABCD所成的角为DAE,其大小为60,射影AD与直线CD所成的角为CDA,其大小为45,所以直线与直线所成的角满足cos=cos60 cos45=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 17987-7:2025 EN Road vehicles - Local Interconnect Network (LIN) - Part 7: Electrical physical layer (EPL) conformance test specification
- 学校天然气使用协议书
- 成都安置房合同协议书
- 智能家居品牌及协议书
- 贝米钱包协议书
- 瓶装水生产转让协议书
- 毕业实习第三方协议书
- 终端购机协议书
- 排雷班主播签约协议书
- 快递员承包合同协议书
- 2025-2030新型钢材产业市场深度调研及前景趋势与投资研究报告
- 新媒体国企面试题及答案
- 烟道内喷涂施工方案
- 水电站运维管理
- 材料的断裂(1)
- 被子植物门分科检索表
- 监理预验收表格(共11页)
- 中国电信移动终端营销策略
- 百胜餐饮HIC高效能的辅导
- 皇家宠物食品有限公司的营销策略分
- 机电控制与可编程序控制器课程设计.doc
评论
0/150
提交评论