三角函数图像变换顺序详解.doc_第1页
三角函数图像变换顺序详解.doc_第2页
三角函数图像变换顺序详解.doc_第3页
三角函数图像变换顺序详解.doc_第4页
三角函数图像变换顺序详解.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 图象变换的顺序寻根题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移 m 变换 2.纵向伸缩 A 变换3.横向平移 变换 4.横向伸缩 变换一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样.以下以y = sinx到y = Asin ()+m为例,讨论4种变换的顺序问题.【例1】 函数的图象可由y = sin x 的图象经过怎样的平移和伸缩变换而得到?【解法1】 第1步,横向平移:将y = sin x 向右平移,得 第2步,横向伸缩: 将的横坐标缩短

2、倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】 第1步,横向伸缩:将y = sin x 的横坐标缩短倍,得 y = sin 2x 第2步,横向平移:将y = sin 2x 向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】 解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大.【质疑】 对以上变换,提出如下疑问:(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变?(2)在横向平移和

3、纵向平移中,为什么它们增减方向相反如当0时对应右移(增方向),而m 1时对应着“缩”,而| A | 1时,对应着“扩”?【答疑】 对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了.如将例1中的变成它们的变换“方向”就“统一”了.对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x中,平移是对x进行的.故先平移(x)对后伸缩()没有影响; 但先收缩(x)对后平移()却存在着“平移”相关. 这就是为

4、什么(在例1的解法2中)后平移时,有的原因.【说明】 为了使得4种变换量与4个参数(A,m)对应,降低“解题风险”,在由sinx变到Asin () ( 0) 的途中,采用如下顺序:(1)横向平移:x(2)横向伸缩:x+(3)纵向伸缩:sin () Asin ()(4)纵向平移:Asin () Asin () + m这正是例1中解法1的顺序.二、正向变换与逆向变换如果把由sin x 到Asin ()+m的变换称作正向变换,那么反过来,由Asin ()+m到sin x变换则称逆向变换.显然,逆向变换的“顺序”是正向变换的“逆”.因为正向变换的一般顺序是:(1)横向平移,(2)横向伸缩,(3)纵向伸

5、缩,(4)纵向平移.所以逆向变换的一般顺序则是:(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.如将函数y= 2sin (2) +1的图像下移1个单位得y=2sin (2x),再将纵坐标缩小一半得y= sin(2 x),再将横坐标扩大2倍得y= sin(x),最后将图象左移得函数y= sinx.【例2】 将y = f (x)cos x 的图象向右平移, 再向上平移1, 所得的函数为y=2sin2 x . 试求f (x)的表达式.【分析】 这是图象变换的逆变换问题:已知函数的变换结果,求“原函数”. 我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.【解析】 将y =

6、2sin2 x 下移1个单位(与正向变换上移1个单位相反),得 y = 2sin2 x1,再将 2sin2x1左移(与正向变换右移相反)得 令 f (x)cos x = 2sin x cos x 得 f (x) = 2sin x【说明】由此得原函数为y=f(x)cosx=2 sin x cosx=sin2x. 正向变换为sin 2x2sin2x,其逆变换为2sin2xsin2x. 因为2sin2x=1+sin(2 x),所以下移1个单位得sin(2 x),左移得sin2x.三、翻折变换 使 0平移变换x是“对x而言”,由于x过于简单而易被忽略.强调一下,这里x的系数是+1. 千万不要误以为是由sin(- x)左移而得.其实,x或y的系数变 -1,也对应着两种不同的图象变换:由x - x对应着关于y轴的对称变换,即沿y轴的翻折变换;由f (x) - f (x)对应着关于x轴的对称变换,即沿x轴的翻折变换.【例3】 求函数的单调减区间. 【分析】 先变换 -3x3x,即沿y轴的翻折变换.【解析1】 ,转化为求g(x)=sin(3x)的增区间令 x (f(x)减区间主解)又函数的f(x)周期为,故函数f(x)减区间的通解为 x 【解析2】 的减区间为 即是 x 【说明】从图象变换的角度看问题,比较解析1和解析2可知,求f(x)的减区间,实际上分两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论