下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、勾股定理、因式分解测试题1. 下列说法正确的是()A.若 a、b、c是ABC的三边,则a2b2c2;B.若 a、b、c是RtABC的三边,则a2b2c2;C.若 a、b、c是RtABC的三边,则a2b2c2;D.若 a、b、c是RtABC的三边,则a2b2c22. RtABC的三条边长分别是、,则下列各式成立的是()A B. C. D. 3 如果Rt的两直角边长分别为k21,2k(k 1),那么它的斜边长是()A、2kB、k+1C、k21D、k2+14. 已知a,b,c为ABC三边,且满足(a2b2)(a2+b2c2)0,则它的形状为()A.直角三角形B.等腰三角形 C.等腰直角三角形D.等腰
2、三角形或直角三角形5 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A121 B120 C90 D不能确定6 ABC中,AB15,AC13,高AD12,则ABC的周长为() A42 B32 C42 或 32 D37 或 337已知a、b、c是三角形的三边长,如果满足则三角形的形状是( )A:底与边不相等的等腰三角形 B:等边三角形 C:钝角三角形 D:直角三角形8斜边的边长为,一条直角边长为的直角三角形的面积是 9. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为.10. 一个直角三角形的三边长的平方和为200,则斜边长为 11. 一个三角形的三边之比为51
3、213,它的周长为60,则它的面积是.12. 在RtABC中,斜边AB=4,则AB2BC2AC2=_13若三角形的三个内角的比是,最短边长为,最长边长为,则这个三角形三个角度数分别是 ,另外一边的平方是 二、综合发展:1、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,求出BD的长? 2.一个三角形三条边的长分别为,这个三角形最长边上的高是多少?3如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?1、把下列各式分解因式: =1.若集合中至
4、多有一个元素,求实数a的取值范围。-答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3 解析:设另一条直角边为x,则斜边为(x+1)利用勾股定理可得方程,可以求出x然后再求它的周长.答案:C4解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5 解析: 勾股定理得到:,另一条直角边是15,所求直角三角形面积为答案: 6 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立答案:,直角,斜,直角7 解析:本
5、题由边长之比是 可知满足勾股定理,即是直角三角形答案:直角8 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形答案:、,39 解析:由勾股定理知道:,所以以直角边为直径的半圆面积为10.125答案:10.12510 解析:长方形面积长宽,即12长3,长,所以一条对角线长为5答案:二、综合发展11 解析:木条长的平方=门高长的平方+门宽长的平方答案:12解析:因为,所以这三角形是直角三角形,设最长边(斜边)上的高为,由直角三角形面积关系,可得,答案:12cm13解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:520=100(m2) 14解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.答案:6.5s1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024农村荒山租赁合同
- 2024山林租赁合同范文
- 2024建设工程勘察合同范本怎样写
- 2024订货购销合同范本范文
- 2024的广播电视服务合同
- 2024正式的产品代理合同样书
- 深圳大学《油画基础》2022-2023学年第一学期期末试卷
- 阿姨照顾小孩合同(2篇)
- 鱼池合同范本(2篇)
- 初一下学期新学期计划范文(7篇)
- 秋日私语(完整精确版)克莱德曼(原版)钢琴双手简谱 钢琴谱
- 办公室室内装修工程技术规范
- 盐酸安全知识培训
- 万盛关于成立医疗设备公司组建方案(参考模板)
- 消防安全巡查记录台帐(共2页)
- 科技特派员工作调研报告
- 中波广播发送系统概述
- 县疾控中心中层干部竞聘上岗实施方案
- 急性心肌梗死精美PPt完整版
- 毕业设计(论文)基于三菱PLC的交通灯模拟控制
- 物业日常巡查记录表.doc
评论
0/150
提交评论