数学人教版八年级上册多边形的内角和.3多边形的内角和.ppt_第1页
数学人教版八年级上册多边形的内角和.3多边形的内角和.ppt_第2页
数学人教版八年级上册多边形的内角和.3多边形的内角和.ppt_第3页
数学人教版八年级上册多边形的内角和.3多边形的内角和.ppt_第4页
数学人教版八年级上册多边形的内角和.3多边形的内角和.ppt_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、11.3 多边形的内角和与外角和,目录,1.多边形的定义,2.正多边形的定义,3.多边形的对角线,4.多边形的内角和,5.多边形的外角和,试一试,三角形有三个内角、三条边,我们也可以把三角形称为三边形(但我们习惯称为三角形),你能说出三角形的定义吗?,三角形是由三条不在同一条直线上的线段 首尾顺次连结组成的平面图形,既然我们已经知道什么叫三角形,你能根据三角形 的定义,说出什么叫四边形吗?,四边形是由四条不在同一直线上的线段首尾顺次连结组成的平面图形,记为四边形ABCD,什么叫五边形?,五边形,它是由五条不在同一直线上的线段首尾顺次连结组成的平面图形,记为五边形ABCDE,一般地,由n条不在同

2、一直线上的线段首尾顺次连结组成的平面图形称为n边形,又称为多边形,那么多边形的定义呢?,下面所示的图形也是多边形,但不在我们现在研究的范围内 。,注 意 我们现在研究的是如右图所示的多边形,也就是所谓的凸多边形,有什么不同?,凹多边形,凸多边形,1.如图8.3.2所示,A、D、C、ABC是四边形ABCD的四个内角,3.CBE和ABF都是与ABC相邻的外角, 两者互为对顶角,四边形有八个外角。,既然三角形有三个内角、三条边,六个外角,那么四边形有几个内角?几条边?几个外角呢?,2.AB,BC,CD,DA是四边形ABCD的四条边,那么五边形有几个内角?几条边?几个外角呢?,那么六边形有几个内角?几

3、条边?几个外角呢?,那么n边形有几个内角?几条边?几个外角呢?,六边形有6个内角,6条边,12个外角,五边形有5个内角,5条边,10个外角,n边形有n个内角,n条边,2n个外角,请大家细心地填一填,多边形的内角,边,外角三者的关系表,你能发现什么规律?,3,3,4,4,5,5,6,6,7,7,n,n,6,8,10,12,14,2n,三角形如果三条边都相等,三个角也都相等,那么这样的三角形就叫做正三角形。,如果多边形各边都相等,各个角也都相等,那么这样的多边形就叫做正多边形。如正三角形、正四边形(正方形)、正五边形等等 。,正三角形,正四边形,正五边形,正六边形,正八边形,(或正三边形),(或正

4、四边形),连结多边形不相邻的两个顶点的线段叫做多边形的对角线.,线段AC是四边形ABCD的一条对角线; 多边形的对角线用虚线表示。,试一试,请大家思考:五边形ABCDE共有几条对角线呢?,五边形ABCDE共有5条对角线。,请大家思考:六边形ABCDEF共有几条对角线呢?,试一试,六边形ABCDEF共有9条对角线。,有没有什么 规律呢?,请问:四边形从一个顶点出发,能引出几条对角线?,请问:五边形从一个顶点出发,能引出几条对角线?,请问:六边形从一个顶点出发,能引出几条对角线?,请问:N边形从一个顶点出发,能引出几条对角线?,1,2,3,N-3,我们已经知道一个三角形的内角和等于180,那么四边

5、形的内角和等于多少呢?五边形、六边形呢?由此,n边形的内角和等于多少呢?,我们学习数学的 基本思想什么?,化未知为已知,那么我们能不能利用三角形的内角和,来求出四边形的内角和,以及五边形、六边形,n边形的内角和?,探索新知,请你认真地想一想,你能通过怎样的方法把多边形转化为三角形?,3,4,5,n-2,540 ,720 ,900 ,180 (n-2),1.从一个顶点出发,由此,我们就可以得出 :,n边形的内角和为_,(n-2) 180 ,它有什么作用呢?,1.知道多边形的边数,可以求出多边形的度数.,2.知道多边形的度数,可以求出多边形的边数.,例1.求八边形的内角和的度数,解 (n2)180

6、 =(82)180 =1 080,分析: n边形的内角和公式为(n-2) 180 , 现在知道这个多边形的边数是, 代入这个公式既可求出.,老师,可以用计算器吗?,例2.已知多边形的内角和的度数为900,则这个多边形的边数为_,解 (n2)180 = 900 (n2)= 900 /180 (n2) = 5 n= 5 +2 n=7,7,哇!这么简单呀!,例3. 已知在一个十边形中,九个内角的和的度数是1290,求这个十边形的另一个内角的度数.,解: (102)180 =1440 则十边形的另一个内角的度数为 1440 - 1290 =150 ,先求出十边形的内角和 再减去1290,就可以得出.,

7、那么对于正多边形来说,又遇到怎样的问题呢?,因为正多边形的每个角相等,所以知道 正多边形的边数,就可以求出每一个内角的度数.,(n2)180/ n,例4.正五边形的每一个内角等于_,外角等于_.,例5.如果一个正多边形的一个内角等于120,则这个多边形的边数是_,解: (n2)180/ n = (52)180/5 =540/5 =108,解: 120n=(n2)180 120n=n180-360 60n =360 n =6,例5.如果一个正多边形的一个内角等于150,则这个多边形的边数是_,A.12 B.9 C. 8 D.7,A,例7.如果一个多边形的边数增加1,则这个多边形的内角和_,增加1

8、80 ,例6.如果一个多边形的每一个外角等于30,则这个多边形的边数是_,解;设五边形中前四个角的度数分别是x,2x,3x,4x,则第五个角度数是x+ 100 . X+2x+3x+4x+x+ 100 = (52)180 11X +100 = 540 11X = 440 X = 40 则这个五边形的内角分别为40, 80, 120, 160, 140.,例8. 五边形中,前四个角的比是1:2:3:4,第五个角比最小角多100 ,则这个五边形的内角分别为_,探索新知,请你认真地想一想,你能通过怎样的方法把多边形转化为三角形?,2,3,4,5,6,n-1,180 ,36 0 ,540 ,720 ,9

9、00 ,180 (n-1)-180 ,2.从边上的一个点出发,探索新知,请你认真地想一想,你能通过怎样的方法把多边形转化为三角形?,3,4,5,6,7,n,180 ,36 0 ,540 ,720 ,900 ,180 n-360,3.从多边形内一个点出发,探索新知,请你认真地想一想,你能通过怎样的方法把多边形转化为三角形?,180 n- 36 0 = 180 n- 2X180 = 180 (n-2),4.从多边形外一个点出发,前面我们学习了三角形的外角和是360 ,当时是怎样研究出来的?,A,B,C,D,E,F,1.先把三角形的三个外角和三个内角这六个角 的和求出来,刚好是三个平角。 2.再用这

10、六个角的和减去三个内角的和,剩下 的就是三角形的外角和了!,那么你能研究出四边形的外角和吗?,整体思路:1.先求4个外角+4个内角的和; 2.再减去4个内角的和,容易看出,4个外角+4个内角=4个平角 而4个内角的和是360 , 那么四边形的外角和就是4X 180-360= 360,那么出五边形,六边形,n边形的外角和吗?,五边形的外角和就是5X 180-540= 360 六边形的外角和就是6X 180-720= 360 。 n边形的外角和就是nX 180- (n-2)X 180 = (n-n+2)X 180 = 360 ,任意多边形的外角和都为3 6 0 ,例9.正五边形的每一个外角等于_.

11、每一个内角等于_,72,144,例10.如果一个正多边形的一个内角等于120,则这个多边形的边数是_,6,例11.如果一个正多边形的一个内角等于150,则这个多边形的边数是_,A.12 B.9 C. 8 D.7,A,例12.如果一个多边形的每一个外角等于30,则这个多边形的边数是_,12,例13.一个正多边形的一个内角和是外角和的2倍,则这个多边形为( )A.三角形 B.四边形 C.五边形 D. 六边形,例14.一个正多边形的一个内角和与外角和的比是7:2,则这个多边形的边数为( ),思考一:一个三角形中,它的内角最多可以有几个锐角? 为什么?,思考二:一个四边形中,它的内角最多可以有几个锐角? 为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论