版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 初中数学教案一 :一元一次不等式组精选案例要说好课,就必须写好说课稿。认真拟定说课稿,是说课取得成功的前提,是教师提高业务素质的有效途径。无忧考网整理了初中数学说课稿范文,希望对你有帮助!下面就是笔者给大家带来的初中数学精选备课教案,希望能帮助到大家!初中数学教案一:一元一次不等式组一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:(1)组成不等式组的不等式必须是一元一次不等式;(2)从数量上看,不等式的个数必须是两个或两个以上;(3)每个不等式在不等式组中的位置并不固定,它们是并列的.二.一元一次不等
2、式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:(1)先分别求出不等式组中各个不等式的解集;(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.三.不等式(组)的解集的数轴表示:一元一次不等式组知识点1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;3.我们根据一元
3、一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。说明:当不等式组中,含有“”或“”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。【一元一次不等式组考点分析】(1)考查不等式组的概念;(2)考查一元一次不等式组的解集,以及在数轴上的表示;(3)考查不等式组的特解问题;(4)确定字母的取值。【一元一次不等式
4、组知识点误区】(1)思维误区,不等式与等式混淆;(2)不能正确地确定出不等式组解集的公共部分;(3)在数轴上表示不等式组解集时,混淆界点的表示方法;(4)考虑不周,漏掉隐含条件;(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;(6)对含字母的不等式,没有对字母取值进行分类讨论。初中数学教案二:有理数的大小比较一、背景知识有理数的大小比较选自浙江版义务教育课程标准实验教科书数学七年级(上册)第一章从自然数到有理数的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了做一做等形式多样的教学活动,让学生通过观察、
5、思考和自己动手操作,体验有理数大小比较法则的探索过程。二、教学目标1、使学生能说出有理数大小的比较法则2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。3、能正确运用符号<>写出表示推理过程中简单的因果关系。三、教学重点与难点重点:运用法则借助数轴比较两个有理数的大小。难点:利用绝对值概念比较两个负分数的大小。四、教学准备多媒体课件五、教学设计(一)交流对话,探究新知1、说一说(多媒体显示)某一天我们5个城市的最低气温从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道
6、广州的最低气温10比上海的最低气温0高,有些学生会说哈尔滨的最低气温零下20比北京的最低气温零下10低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。比较这一天下列两个城市间最低气温的高低(填高于或低于)广州_上海;北京_上海;北京_哈尔滨;武汉_哈尔滨;武汉_广州。2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?(3)温度的高低与相应的数在数轴上的位置有什么?(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感
7、受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:在数轴上表示的两个数,右边的数总比左边的数大。正数都大于零,负数都小于零,正数大于负数。(二)应用新知,体验成功1、练一练(师生共同完成例1后,学生完成随堂练习1)例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用<号连接。(师生共同完成)分析:本题意有几层含义?应分几步?要点总结:小组讨论归纳,本题解题
8、时的一般步骤:画数轴描点;有序排列;不等号连接。随堂练习:P19 T12、做一做(1)在数轴上表示下列各对数,并比较它们的大小2和7-6和-1-6和-36-和-1.5(2)求出图中各对数的绝对值,并比较它们的大小。(3)由、从中你发现了什么?(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。在学生讨论的基础上,由学生总结得出有理数大小的比较法则。(1)正数都大于零,负数都小于零,正数大于负数。(2)两个正数比较大小,绝对值大的数大。(
9、3)两个负数比较大小,绝对值大的数反而小。3、师生共同完成例2后,学生完成随堂练习2、3、4。例2比较下列每对数的大小,并说明理由:(师生共同完成)(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。两个负数比较大小时的一般步骤:求绝对值;比较绝对值的大小;比较负数的大小。思考:还有别的方法吗?(分组讨论,积极思
10、考)4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。练一练:P19T2、3、45、考考你:请你回答下列问题:(1)有没有的有理数,有没有最小的有理数,为什么?(2)有没有绝对值最小的有理数?若有,请把它写出来?(3)在于-1.5且小于4.2的整数有_个,它们分别是_。(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)(新颖的问题会激发学生
11、的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)6、议一议,谈谈本节课你有哪些收获(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用<(或>)连接,这种方法在比较多个有理数大小时非常简便。六、布置作业:P19A组、B组基础好的A、B两组都做基础较差的同学选做A组。初中数学教案三:平行线的判定一、教学目标1.了解推理、证明的格式,理解判定定理的证法.2.掌握平行线的第二个判定定理,会
12、用判定公理及定理进行简单的推理论证.3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:积极参与、主动发现、发展思维.三、重点?难点及解决办法(一)重点判定定理的推导和例题的解答.(二)难点使用符号语言进行推理.(三)解决办法1.通过教师正确引导,学生积极思维,发现定理,解决重点.2.通过教师指导,学生自行完成推理过程,解决难点及疑点.四、课时安排1课时五、教具学具准备三角板、投影仪、自制胶片.六、师生互动活动
13、设计1.通过设计练习,复习基础,创造情境,引入新课.2.通过教师指导,学生探索新知,练习巩固,完成新授.3.通过学生自己总结完成小结.七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).学生活动:学生口答第1、2题.师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.教师将第3题图形画在黑板上.学生活动:学生口答理由,同角的补角相等.师:要求学生写出符号推理过程,并板书.【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?学生活动:同分内角.师:它们有什么关系.学生活
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论