版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1,第 二 章 正投影法基本原理,2,21 投影的形成及常用的投影方法,投影方法,中心投影法,平行投影法,直角投影法(正投影法),斜角投影法,画透视图,画斜轴测图,画工程图样及正轴测图,3,中心投影法,投射中心、物体、投影面三者之间的相对距离对投影的大小有影响。 度量性较差,投影特性,投射线,投射中心,投影面,投影,物体位置改变,投影大小也改变,4,平行投影法,斜角投影法,投 影 特 性,投影大小与物体和投影面之间的距离无关。 度量性较好,工程图样多数采用正投影法绘制。,5,采用多面投影。,过空间点A的投射线与投影面P的交点即为点A在P面上的投影。,点在一个投影面上的投影不能确定点的空间位置。
2、,一、点在一个投影面上的投影,a,22 点的投影,6,二、点的三面投影,投影面,正面投影面(简称正 面或V面),水平投影面(简称水 平面或H面),侧面投影面(简称侧 面或W面),投影轴,OX轴 V面与H面的交线,OZ轴 V面与W面的交线,OY轴 H面与W面的交线,三个投影面互相垂直,7,空间点A在三个投影面上的投影,空间点用大写字母表示,点的投影用小写字母表示。,8,X,Y,Z,O,V,H,W,A,a,a,a,向右翻,向下翻,不动,投影面展开,9,X,Y,Z,O,V,H,W,A,a,a,a,点的投影规律:, aaOX轴, aax= aaz=y=A到V面的距离,aax= aay=z=A到H面的距
3、离,aay= aaz=x=A到W面的距离,aaOZ轴,10,例:已知点的两个投影,求第三投影。,a,a,ax,az,az,解法一:,通过作45线使aaz=aax,解法二:,用圆规直接量取aaz=aax,11,三、两点的相对位置,两点的相对位置指两点在空间的上下、前后、左右位置关系。,判断方法:, x 坐标大的在左, y 坐标大的在前, z 坐标大的在上,b,a,a,a,b,b,B点在A点之前、之右、之下。,X,YH,YW,Z,12,重影点:,空间两点在某一投影面上的投影重合为一点时,则称此两点为该投影面的重影点。,A、C为H面的重影点,a,a,c,被挡住的投影加( ),( ),a c,13,2
4、3 直线的投影,两点确定一条直线,将两点的同名投影用直线连接,就得到直线的同名投影。, 直线对一个投影面的投影特性,一、直线的投影特性,直线垂直于投影面 投影重合为一点 积聚性,直线平行于投影面 投影反映线段实长 ab=AB,直线倾斜于投影面 投影比空间线段短 ab=ABcos,14, 直线在三个投影面中的投影特性,投影面平行线,投影面垂直线,正平线(平行于面),侧平线(平行于面),水平线(平行于面),正垂线(垂直于面),侧垂线(垂直于面),铅垂线(垂直于面),一般位置直线,统称特殊位置直线,15, 投影面平行线, 在其平行的那个投影面上的投影反映实长, 并反映直线与另两投影面倾角的实大。,
5、另两个投影面上的投影平行于相应的投影 轴。,水平线,侧平线,正平线,投 影 特 性:,与H面的夹角: 与V面的角: 与W面的夹角: ,实长,实长,实长,16,反映线段实长。且垂直 于相应的投影轴。, 投影面垂直线,铅垂线,正垂线,侧垂线, 另外两个投影,, 在其垂直的投影面上,,投影有积聚性。,投影特性:,17, 一般位置直线,投影特性:,三个投影都缩短。即: 都不反映空间线段的实长及与三个投影面夹角的实大,且与三根投影轴都倾斜。,18,二、直线与点的相对位置, 若点在直线上, 则点的投影必在直线的同名投影上。并将线段的同名投影分割成与空间相同的比例。即:,若点的投影有一个不在直线的同名投影上
6、, 则该点必不在此直线上。,判别方法:,AC/CB=ac/cb= ac / cb,A,B,C,V,H,b,c,c,b,a,a,定比定理,19,点C不在直线AB上,例1:判断点C是否在线段AB上。,点C在直线AB上,20,例2:判断点K是否在线段AB上。,a,b,因k不在a b上, 故点K不在AB上。,应用定比定理,a,b,k,a,b,k,21,三、两直线的相对位置,空间两直线的相对位置分为: 平行、相交、交叉。, 两直线平行,投影特性:,空间两直线平行,则其各同名投影必相互平行,反之亦然。,22,a,b,c,d,c,a,b,d,例1:判断图中两条直线是否平行。,对于一般位置直线,只要有两个同名
7、投影互相平行,空间两直线就平行。,AB/CD,23,b,d,c,a,c,b,a,d,d,b,a,c,对于特殊位置直线,只有两个同名投影互相平行,空间直线不一定平行。,求出侧面投影后可知:,AB与CD不平行。,例2:判断图中两条直线是否平行。,求出侧面投影,24, 两直线相交,判别方法:,若空间两直线相交,则其同名投影必相交,且交点的投影必符合空间一点的投影规律。,交点是两直线的共有点,25,例:过C点作水平线CD与AB相交。,先作正面投影,26,1(2 ),3(4 ), 两直线交叉,投影特性:, 同名投影可能相交,但 “交点”不符合空间一个点的投影规律。, “交点”是两直线上的一 对重影点的投
8、影,用其可帮助判断两直线的空间位置。,、是面的重影点,、是H面的重影点。,为什么?,两直线相交吗?,27, 两直线垂直相交(或垂直交叉),直角的投影特性:,若直角有一边平行于投影面,则它在该投影面上的投影仍为直角。,设 直角边BC/H面 因 BCAB, 同时BCBb 所以 BCABba平面,直线在H面上的投影互相垂直,即 abc为直角,因此 bcab,故 bc ABba平面,又因 BCbc,证明:,28,a,b,c,a,b,c,例:过C点作直线与AB垂直相交。,29, 小 结 ,点与直线的投影特性,尤其是特殊位置 直线的投影特性。 点与直线及两直线的相对位置的判断方 法及投影特性。 定比定理。
9、 直角定理,即两直线垂直时的投影特性。,重点掌握:,30,一、点的投影规律, aaOX轴, aax= aaz=y=A到V面的距离,aax= aay=z=A到H面的距离,aay= aaz=x=A到W面的距离,aaOZ轴,31,二、各种位置直线的投影特性, 一般位置直线,三个投影与各投影轴都倾斜。, 投影面平行线,在其平行的投影面上的投影反映线段实长及与相应投影面的夹角。另两个投影平行于相应的投影轴。, 投影面垂直线,在其垂直的投影面上的投影积聚为一点。另两个投影反映实长且垂直于相应的投影轴。,32,三、直线上的点, 点的投影在直线的同名投影上。, 点分线段成定比,点的投影必分线段的投影 成定比定
10、比定理。,四、两直线的相对位置, 平行, 相交, 交叉(异面),同名投影互相平行。,同名投影相交,交点是两直线的共有点,且符合空间一个点的投影规律。,同名投影可能相交,但“交点”不符合空间一个点的投影规律。“交点”是两直线上一对重影点的投影。,33,五、相互垂直的两直线的投影特性, 两直线同时平行于某一投影面时,在该 投影面上的投影反映直角。, 两直线中有一条平行于某一投影面时, 在该投影面上的投影反映直角。, 两直线均为一般位置直线时, 在三个投影面上的投影都不 反映直角。,直角定理,34,2.4 平面的投影,一、平面的表示法,不在同一直线上的三个点,直线及线外一点,两平行直线,两相交直线,
11、平面图形,35,二、平面的投影特性,实形性,类似性,积聚性, 平面对一个投影面的投影特性,36, 平面在三投影面体系中的投影特性,平面对于三投影面的位置可分为三类:,投影面垂直面,投影面平行面,一般位置平面,垂直于某一投影面,倾斜于另两个投影面,平行于某一投影面, 垂直于另两个投影面,与三个投影面都倾斜,37,a,b,c,a,c,b,c,b,a, 投影面垂直面,类似性,类似性,积聚性,铅垂面,投影特性:,在它垂直的投影面上的投影积聚成直线。该直线与投影轴的夹角反映空间平面与另外两投影面夹角的大小。,另外两个投影面上的投影有类似性。,为什么?,38, 投影面平行面,积聚性,积聚性,实形性,水平面
12、,投影特性:,在它所平行的投影面上的投影反映实形。,另两个投影面上的投影分别积聚成与相应的投影轴平行的直线。,39, 一般位置平面,三个投影都类似。,投影特性:,40,三、平面上的直线和点, 平面上取任意直线,41,a,b,c,b,c,a,d,n,m,例1:已知平面由直线AB、AC所确定,试 在平面内任作一条直线。,解法一,解法二,根据定理二,根据定理一,有无数解。,42,例2:在平面ABC内作一条水平线,使其到 H面的距 离为10mm。,n,m,n,m,唯一解!,43, 平面上取点,先找出过此点而又在平面内的一条直线作为辅助线,然后再在该直线上确定点的位置。,例1:已知K点在平面ABC上,求
13、K点的水平投影。,面上取点的方法:,首先面上取线,利用平面的积聚性求解,通过在面内作辅助线求解,44,k,b,例2:已知AC为正平线,补全平行四边形 ABCD的水平投影。,解法一,解法二,45,2.5 直线与平面及两平面的相对位置,相对位置包括平行、相交和垂直。,一、平行问题,直线与平面平行,平面与平面平行, 直线与平面平行,46,a,c,b,m,a,b,c,m,例1:过M点作直线MN平行于平面ABC。,有无数解,47,正平线,例2:过M点作直线MN平行于V面和平面 ABC。,c,b,a,m,a,b,c,m,唯一解,48, 两平面平行, 若一平面上的两相交直线对应平行于另一平面上的两相交直线,
14、则这两平面相互平行。, 若两投影面垂直面相互平行,则它们具有积聚性的那组投影必相互平行。,49,二、相交问题, 直线与平面相交,直线与平面相交,其交点是直线与平面的共有点。,要讨论的问题:, 求直线与平面的交点。, 判别两者之间的相互遮挡关系,即判别可 见性。,我们只讨论直线与平面中至少有一个处于特殊位置的情况。,50,a,b,c,m,n,c,n,b,a,m, 平面为特殊位置,例:求直线MN与平面ABC的交点K并判别可见性。,空间及投影分析,平面ABC是一铅垂面,其水平投影积聚成一条直线,该直线与mn的交点即为K点的水平投影。, 求交点, 判别可见性,由水平投影可知,KN段在平面前,故正面投影
15、上kn为可见。,还可通过重影点判别可见性。,1(2),作 图,51,k,m(n),b,m,n,c,b,a,a,c, 直线为特殊位置,空间及投影分析,直线MN为铅垂线,其水平投影积聚成一个点,故交点K的水平投影也积聚在该点上。, 求交点, 判别可见性,点位于平面上,在前;点位于MN上,在后。故k 2为不可见。,1(2),作图,用面上取点法,52, 两平面相交,两平面相交其交线为直线,交线是两平面的共有线,同时交线上的点都是两平面的共有点。,要讨论的问题:, 求两平面的交线,方法:, 确定两平面的两个共有点。, 确定一个共有点及交线的方向。,只讨论两平面中至少有一个处于特殊位置的情况。, 判别两平
16、面之间的相互遮挡关系,即: 判别可见性。,53,可通过正面投影直观地进行判别。,a,b,c,d,e,f,c,f,d,b,e,a,m(n),空间及投影分析,平面ABC与DEF都为正垂面,它们的正面投影都积聚成直线。交线必为一条正垂线,只要求得交线上的一个点便可作出交线的投影。, 求交线, 判别可见性,作 图,从正面投影上可看出,在交线左侧,平面ABC在上,其水平投影可见。,能!,如何判别?,例:求两平面的交线MN并判别可见性。,54,b,c,f,h,a,e,a,b,c,e,f,h,1(2),空间及投影分析,平面EFH是一水平面,它的正面投影有积聚性。ab与ef的交点m 、 b c与f h的交点n
17、即为两个共有点的正面投影,故mn即MN的正面投影。, 求交线, 判别可见性,点在FH上,点在BC上,点在上,点在下,故fh可见,n2不可见。,作 图,55,c,d,e,f,a,b,a,b,c,d,e,f,投影分析,N点的水平投影n位于def的外面,说明点N位于DEF所确定的平面内,但不位于DEF这个图形内。 所以ABC和DEF的交线应为MK。,互交,56, 小 结 ,重点掌握:,二、如何在平面上确定直线和点。,三、两平面平行的条件一定是分别位于两平面 内的两组相交直线对应平行。,四、直线与平面的交点及平面与平面的交线是 两者的共有点或共有线。,解题思路:,空间及投影分析,目的是找出交点或交线的
18、已知投影。,判别可见性,尤其是如何利用重影点判别。,一、平面的投影特性,尤其是特殊位置平面的 投影特性。,57,要 点,一、各种位置平面的投影特性, 一般位置平面, 投影面垂直面, 投影面平行面,三个投影为边数相等的类似多边形类似性。,在其垂直的投影面上的投影积聚成直线 积聚性。 另外两个投影类似。,在其平行的投影面上的投影反映实形 实形性。 另外两个投影积聚为直线。,58,二、平面上的点与直线,三、平行问题, 直线与平面平行 直线平行于平面内的一条直线。, 两平面平行 必须是一个平面上的一对相交直线对应平行 于另一个平面上的一对相交直线。,59,四、相交问题, 求直线与平面的交点的方法, 一
19、般位置直线与特殊位置平面求交点,利用 交点的共有性和平面的积聚性直接求解。, 投影面垂直线与一般位置平面求交点,利用 交点的共有性和直线的积聚性,采取平面上 取点的方法求解。, 求两平面的交线的方法, 两特殊位置平面相交,分析交线的空间位置, 有时可找出两平面的一个共有点,根据交线 的投影特性画出交线的投影。, 一般位置平面与特殊位置平面相交,可利用 特殊位置平面的积聚性找出两平面的两个共 有点,求出交线。,60,2.6 换面法,一、问题的提出, 如何求一般位置直线的实长? 如何求一般位置平面的真实大小?,换 面 法: 物体本身在空间的位置不动,而用某一新投影面(辅助投影面)代替原有投影面,使
20、物体相对新的投影面处于解题所需要的有利位置,然后将物体向新投影面进行投射。,解决方法:更换投影面。,61,二、新投影面的选择原则,1. 新投影面必须对空间物体处于最有利的解 题位置。, 平行于新的投影面 垂直于新的投影面,2. 新投影面必须垂直于某一保留的原投影面, 以构成一个相互垂直的两投影面的新体系。,62, 更换一次投影面,A点的两个投影:a, a,A点的两个投影:a,a1, 新投影体系的建立,三、点的投影变换规律,63,ax1,V,H,X,P1,H,X1,a,a,a1,V,H,A,a,ax,X,a1,ax1, 新旧投影之间的关系, aa1 X1, a1ax1 = aax, 点的新投影到
21、新投影轴的距离等于被代替的投影 到原投影轴的距离。,ax,a,一般规律:, 点的新投影和与它有关的原投影的连线,必垂直 于新投影轴。,.,64,更换H面, 求新投影的作图方法,V,H,X,由点的不变投影向新投影轴作垂线,并在垂线上量取一段距离,使这段距离等于被代替的投影到原投影轴的距离。,a,a,ax,ax1,ax1,更换V面,作图规律:,65, 更换两次投影面, 新投影体系的建立,按次序更换,A,a,V,H,a,ax,X,66,a,a,X,V,H, 求新投影的作图方法,作图规律 a2a1 X2 轴 a2ax2 = aax1,ax,67,四、换面法的四个基本问题,1. 把一般位置直线变换成投影
22、面平行线,用P1面代替V面,在P1/H投影体系中,AB/P1。,空间分析:,不行!,作图:,新投影轴的位置?,与ab平行。,68,2. 把一般位置直线变换成投影面垂直线,空间分析:,a,b,a,b,X,V,H,作图:,二次换面把投影面平行线变成投影面垂直线。,X2轴的位置?,与a1b1垂直,一次换面把直线变成投影面平行线;,69,一般位置直线变换成投影面垂直线,需经几次变换?,3. 把一般位置平面变换成投影面垂直面,如果把平面内的一条直线变换成新投影面的垂直线,那么该平面则变换成新投影面的垂直面。,空间分析:,在平面内取一条投影面平行线,经一次换面后变换成新投影面的垂直线,则该平面变成新投影面
23、的垂直面。,作图方法:,能否只进行一次变换?,思考: 若变换H面,需在面内取什么位置直线?,正平线!,70,a,b,c,a,c,b,X,V,H,例:把三角形ABC变换成投影面垂直面。,作 图 过 程:, 在平面内取一条水平 线AD。, 将AD变换成新投影 面的垂直线。,反映平面对哪个投影面的夹角?,71,一次换面, 把一般位置平面变换成新投影面的垂直面; 二次换面,再变换成新投影面的平行面。,4. 把一般位置平面变换成投影面平行面,a,b,a,c,b,X,V,H,c,作 图:,AB是水平线,空间分析:,X2轴的位置?,平面的实形,与其平行,72,距离,d1,五、换面法的应用,如下图:当直线AB垂直于投影面时,CD平行于投影面,其投影反映实长。,作图:,求C点到直线AB的距离,就是求垂线CD的实长。,空间及投影分析:,过c1作线平行于x2轴。,73,b,a,a,b,c,d,例2:已知两交叉直线AB和CD的公垂线的长度 为MN, 且AB为水平线,求CD及MN的投影。,空间及投影分析:,V,H,X,圆半径=MN,作图:,请注意各点的投影如何返回?,求m点是难点。,74,空间及投影分析:AB与CD都平行于投影面时,其投影的夹角才反映实大(60),因此需将AB与C点所确定的平面变换成投影面平行面。,例3: 过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 散客旅游合同范本在线查看
- 企业车辆交易协议书模板
- 2024体育赛事场地租赁合同
- 2024版土石方运输合同
- 农村个人购房合同范例
- 合伙协议书范例
- 如何签订借款合同避免风险
- 个人汽车买卖合同样本模板
- 2023年高考地理专题复习新题典题精练-洋流(原卷版)
- 致大海选择性必修中册 第四单元课件
- (必练)广东省军队文职(经济学)近年考试真题试题库(含答案)
- 含羞草天气课件
- 2024年安全生产知识竞赛考试题库及答案(共五套)
- 22《鸟的天堂》课件
- 农业灌溉装置市场环境与对策分析
- 新疆乌鲁木齐市第十一中学2024-2025学年八年级上学期期中道德与法治试卷
- 2024年江西省高考地理真题(原卷版)
- 部编版小学五年级上册道法课程纲要(知识清单)
- 经济法学-计分作业一(第1-4章权重25%)-国开-参考资料
- 山东省临沂市(2024年-2025年小学四年级语文)人教版期中考试(上学期)试卷及答案
- 护士2024思想汇报5篇
评论
0/150
提交评论