二次函数 (2)_第1页
二次函数 (2)_第2页
二次函数 (2)_第3页
二次函数 (2)_第4页
二次函数 (2)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、微 格 教 案学校:湛江师范学院专业:数学与应用数学授课时间:6分钟主题(课题):二次函数(第一课时)科目:数 学施教对象:初 一主讲(受训人):梅 涛受训班级:2009 级 4班学号:2009224234受训技能:导入技能、讲解技能指导教师:汪 莹日期:2011年10月17日教学目标1、 通过具体问题引入二次函数的概念。2、 理解二次函数的概念,掌握二次函数的形式。3、 在解决实际问题的过程中会建立简单的二次函数的模型并体会二次函数的意义。教学重点1、 理解二次函数的概念。2、 掌握二次函数的形式。教学难点在解决实际问题的过程中会建立简单的二次函数的模型并体会二次函数的意义。时间分配教师的教

2、学行为教学技能学生学习行为教学媒体1一、回顾旧知“上节课我们学习了一次函数,那么我们回顾一下函数和一次函数的定义。”1、函数的概念:一般的,在一个变化中。如果有2个变量x和y,并且对于给定的x的值,都有唯一确定的y与其对应,称y是x的函数。2、一次函数的概念:一般的,形如y=kx+b(k,b是常数,k0)的函数,叫一次函数。板书:y=kx+b (k0)“那么二次函数又是什么呢?与一次函数有什么关系?下面我们进入新课二次函数。”提问板书板书巩固知识,引起求知兴趣各抒己见。总结:对于一个x有一个y与其对应y=kx+b(k,b是常数,k0),b可以为0板书121二、导入新课首先,我们来看一个问题:问

3、题1:如图,正方体的六个面全是全等的正方形如图,设正方体的棱长为x,表面积为y,那么棱长x与表面积y有什么样的关系呢?“显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们具体的关系可以表示为y = 6x2”板书:y = 6x 2“上面的问题很容易解答,那么面对现实生活中的实际问题呢?”问题2:某工厂一种产品现在的年产量是20件,计划今后两年增加产量如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?分析解答(板书):这种产品的原产量是20件,一年后的产量是(20+20x)件,再经过一年后的产量是(20+20x)+x(20

4、+20x)件,两年后的产量为y = 20(1+x)2既y =20x2+40x+20,表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y都有一个对应值,即y是x的函数。“观察我们求得的2个式子:y = 6x 2和y =20x2+40x+20,这2个式子有什么共同点?”“在上面的问题中,函数都是用自变量的二次式表示的”总结:一般的,形如y =ax2+bx+c(a、b、c是常数,a0)的函数,叫二次函数。其中,x是自变量,a、b、c分别是函数表达式的二次项系数、一次项系数和常数项。ppt演示提问反馈ppt演示提问板书反馈提问反馈语言观察、思考y = 6x2观察、思考y = 20(

5、1+x)2思考、各抒己见自变量的次数,y与x对应等ppt演示板书ppt演示板书3030三、课后小结“回顾我们都学过那些函数?一般式是什么?你能说出他们命名的原因吗?”现在我们学习过的函数有:一次函数:y=kx+b(k0)二次函数:y =ax2+bx+c(a、b、c是常数,a0)我们可以发现,这些函数的名称都反映了函数表达式与自变量的关系。今天的课就到这里,我们学习了1、 通过具体问题引入二次函数的概念。2、 理解二次函数的概念,掌握二次函数的形式。3、 在解决实际问题的过程中会建立简单的二次函数的模型并体会二次函数的意义。希望同学们课后认真回顾这节课所讲的内容。最后谢谢同学们的参与,下节课再见

6、!提问ppt演示语言ppt演示思考、各抒己见总结结束语ppt演示分享 分享到新浪Qing0顶阅读(34) 评论 (0) 收藏(0) 转载(0) 顶 打印举报 已投稿到:排行榜 圈子 转载列表:转载 转载是分享博文的一种常用方式.前一篇:2009224406陈名剑(正数和负数)后一篇:微格教案09数本4何洪标2009224228评论 重要提示:警惕虚假中奖信息|商讯新浪奢品7天无风险退货发评论当第一个评论者吧! 抢沙发发评论 商讯爱心签名换梦想,天天派奖|商讯提高博客人气新方法更多 登录名: 密码: 找回密码 注册 记住登录状态昵称:分享到微博 评论并转载此博文验证码: 请点击后输入验证码 收听验证码 匿名评论发评论 以上网友发言只代表其个人观点,不代表新浪网的观点或立场。微格教案09数本4何洪标2009224228新浪BLOG意见反馈留言板不良信息反馈电话:4006900000 提示音后按1键(按当地市话标准计费)欢迎批评指正新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 |

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论