版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、乘法公式专项练习题一、选择题1平方差公式(a+b)(ab)=a2b2中字母a,b表示( ) A只能是数 B只能是单项式 C只能是多项式 D以上都可以2下列多项式的乘法中,可以用平方差公式计算的是( ) A(a+b)(b+a) B(a+b)(ab) C(a+b)(ba) D(a2b)(b2+a)6 C6 D55. 若x2xm=(xm)(x+1)且x0,则m等于( ) A.1 B.0C.1D.26. 计算(a2b2)(a2+b2)2等于( )A.a42a2b2+b4 B.a6+2a4b4+b6 C.a62a4b4+b6 D.a82a4b4+b87. 已知(a+b)2=11,ab=2,则(ab)2的
2、值是( ) A.11 B.3 C.5 D.198. 若x27xy+M是一个完全平方式,那么M是( ) A.y2 B.y2 C.y2 D.49y29. 若x,y互为不等于0的相反数,n为正整数,你认为正确的是( )A. xn、yn一定是互为相反数 B.()n、()n一定是互为相反数3下列计算中,错误的有( ) A1个 B2个 C3个 D4个(3a+4)(3a4)=9a24;(2a2b)(2a2+b)=4a2b2;(3x)(x+3)=x29;(x+y)(x+y)=(xy)(x+y)=x2y24若x2y2=30,且xy=5,则x+y的值是( ) A5 BC.x2n、y2n一定是互为相反数 D.x2n
3、1、y2n1一定相等10. 已知,那么的值为( ) (A)1 (B)2 (C)3 (D)411. 已知,且,则与的大小关系为( ) (A) (B) (C) (D)无法确定12. 设是不全相等的任意有理数若,则( ) A都不小于0 B都不大于0 C至少有一个小于0 D至少有一个大于0二、填空题1. (2x+y)(2xy)=_ (3x2+2y2)(_)=9x44y42. (a+b1)(ab+1)=(_)2(_)23. 两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_ 4. 若a2+b22a+2b+2=0,则a2004+b2005=_.5. 5(ab)2
4、的最大值是_,当5(ab)2取最大值时,a与b的关系是_.6. 多项式加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是_(填上你认为正确的一个即可,不必考虑所有的可能情况)。7.已知x25x+1=0,则x2+=_, x-1x=_.8. 已知(2005a)(2003a)=1000,请你猜想(2005a)2+(2003a)2=_.9. 填空: a2+b2=(a+b)2_ _ (a+b)2=(ab)2+_ _ a3+b3=(a+b)33ab( _) a4+b4=(a2+b2)2_ _ a5+b5=(a+b)(a4+b4)_ _ a5+b5=(a2+b2)(a3+b3)_ _ 10
5、. 已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 。11. 已知,那么= 。12. 计算:= 。13. 已知满足,则代数式= 。14. 已知,则= 。15. 已知,则代数式= 。16. 若,则= 。17. 若,则的个位数是 。18. ,则= 。19. 如果正整数满足方程,则这样的正整数对的个数是 。20. 已知, 则= 。21. 多项式的最小值为_22. 1.3450.3452.691.34531.3450.3452=_23. 请你观察图1中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是_。 24. 如图2,在长为a的正方形中挖掉一个边长为
6、b的小正方形(),把余下的部分剪成一个矩形,如图3,通过计算两个图形的面积,验证了一个等式,则这个等式是_。三、解答题1.计算 (1)(a2b+3c)2(a+2b3c)2;(2)ab(3b)2a(bb2)(3a2b3);(3)21000.5100(1)2005(1)5; (4)(x+2y)(x2y)+4(xy)26x6x.(5) (a+2)(a2+4)(a4+16)(a2) (6)1222324299210021012(7)(2+1)(22+1)(24+1)(22n+1)+1(n是正整数); (8)2、解方程(1)x(9x5)(3x1)(3x+1)=5. (2)(x+2)+(2x+1)(2x1
7、)=5(x2+3) 3. 若x1,则(1+x)(1x)=1x2,(1x)(1+x+x2)=1x3,(1x)(1+x+x2+x3)=1x4 (1)观察以上各式并猜想:(1x)(1+x+x2+xn)=_(n为正整数)(2)根据你的猜想计算: (12)(1+2+22+23+24+25)=_ 2+22+23+2n=_(n为正整数)(x1)(x99+x98+x97+x2+x+1)=_ (3)通过以上规律请你进行下面的探索: (ab)(a+b)=_ (ab)(a2+ab+b2)=_ (ab)(a3+a2b+ab2+b3)=_4. 计算.(2+1)(22+1)(24+1)=(21)(2+1)(22+1)(2
8、4+1)=(221)(22+1)(24+1)=(241)(24+1)=281. 根据上式的计算方法,请计算(3+1)(32+1)(34+1)(332+1)的值.5. 已知m2+n2-6m+10n+34=0,求m+n的值 6. 已知求与的值。7. 已知求与的值。8. 已知,且, 求的值?9. 广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?10. 试说明不论x,y取何值,代数式的值总是正数。11. 已知三角形ABC的三边长分别为a,b,c且a,b,c满足等式,请说明该三角形是什么三角形?12. 已知,求:代数式的值。1
9、3. 若, 试比较M与N的大小14. 已知,求的值.15. 从边长为a的大正方形纸板挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图J甲),然后拼成一个平行四边形(如图乙)那么通过计算两个图形阴影部分的面积,可以验证成立的公式为_。 16. 已知能被6070之间的两个整数整除,求这两个整数?初中数学竞赛专题 乘法公式一、内容提要1 乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重
10、要的变形及其逆运算除法等。2 基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。完全平方公式:(ab)2=a22ab+b2,平方差公式:(a+b)(ab)=a2b2立方和(差)公式:(ab)(a2ab+b2)=a3b33.公式的推广:5 多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。6 二项式定理:(ab)3=a33a2b+3ab2b3(ab)4=a44a3b+6a2b24ab3+b4)(ab)5=a55a4b+10a3b2 10a2b35ab4b5)注意观察右边展开式的
11、项数、指数、系数、符号的规律7 由平方差、立方和(差)公式引伸的公式(a+b)(a3a2b+ab2b3)=a4b4 (a+b)(a4a3b+a2b2ab3+b4)=a5+b5(a+b)(a5a4b+a3b2a2b3+ab4b5)=a6b6 注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n1a2n2b+a2n3b2ab2n2b2n1)=a2nb2n(a+b)(a2na2n1b+a2n2b2ab2n1+b2n)=a2n+1+b2n+1类似地:(ab)(an1+an2b+an3b2+abn2+bn1)=anbn4. 公式的变形及其逆运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年牙科种植转诊及术后康复服务合作协议2篇
- 2024年度商业地产单位房屋买卖合同范本3篇
- 高二校园安全教育
- 2024年标准外派服务协议范本版B版
- 消费者行为分析-第4篇-洞察分析
- 衍生品交易机制创新-洞察分析
- 土壤胶体结构优化-洞察分析
- 2024年标准化建筑基础结构检测服务协议版
- 2024年度汽车配件区域代理商合作协议书范本3篇
- 线上线下观影体验对比-洞察分析
- 系统运行维护方案
- 转子找静平衡方法
- 2025年九省联考新高考 政治试卷(含答案解析)
- 终极战略规划指南:深度剖析Cross SWOT分析、市场洞察与内部能力优化的综合行动方案
- 中国偏头痛诊治指南(第一版)2023解读
- 湖北省武汉市黄陂区2024年数学六年级第一学期期末学业质量监测模拟试题含解析
- 关于开展2024年度保密自查自评专项检查工作的实施方案
- 商场反恐防暴应急预案演练方案
- 2024年天津市西青经济开发集团限公司公开招聘工作人员高频500题难、易错点模拟试题附带答案详解
- 数据库设计规范标准
- 2023年全国职业院校技能大赛赛项-ZZ019 智能财税基本技能赛题 - 模块三-答案
评论
0/150
提交评论