版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数与一元二次方程1,22.2二次函数与一元二次方程,第二十二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,二次函数与一元二次方程1,学习目标,1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点) 2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点) 3.了解用图象法求一元二次方程的近似根.,二次函数与一元二次方程1,导入新课,情境引入,问题 如图,以40m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系: h=20t-5t2, 考虑以下问
2、题:,二次函数与一元二次方程1,讲授新课,(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?,15,1,3,当球飞行1s或3s时,它的高度为15m.,解:解方程 15=20t-5t2, t2-4t+3=0, t1=1,t2=3.,你能结合上图,指出为什么在两个时间求的高度为15m吗?,h=20t-5t2,二次函数与一元二次方程1,(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?,你能结合图形指出为什么只在一个时间球的高度为20m?,20,2,解方程: 20=20t-5t2, t2-4t+4=0, t1=t2=2.,当球飞行2秒时,它的高度为20米.,h=20t-5t2,二
3、次函数与一元二次方程1,(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?,你能结合图形指出为什么球不能达到20.5m的高度?,20.5,解方程: 20.5=20t-5t2, t2-4t+4.1=0, 因为(-4)2-4 4.10, 所以方程无解. 即球的飞行高度达不到20.5米.,h=20t-5t2,二次函数与一元二次方程1,(4)球从飞出到落地要用多少时间?,0=20t-5t2, t2-4t=0, t1=0,t2=4.,当球飞行0秒和4秒时,它的高度为0米.,即0秒时球地面飞出,4秒时球落回地面.,h=20t-5t2,二次函数与一元二次方程1,(3)球的飞行高度能否达到20.
4、5m?如果能,需要多少飞行时间?,你能结合图形指出为什么球不能达到20.5m的高度?,20.5,解方程: 20.5=20t-5t2, t2-4t+4.1=0, 因为(-4)2-4 4.10, 所以方程无解. 即球的飞行高度达不到20.5米.,h=20t-5t2,二次函数与一元二次方程1,从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?,一般地,当y取定值且a0时,二次函数为一元二次方程.,如:y=5时,则5=ax2+bx+c就是一个一元二次方程.,二次函数与一元二次方程1,所以二次函数与一元二次方程关系密切,例如,已知二次函数y = x24x的值为3,求自变量x的值,可以解一元二次
5、方程x24x=3(即x24x+3=0),反过来,解方程x24x+3=0 又可以看作已知二次函数 y = x24x+3 的值为0,求自变量x的值,二次函数与一元二次方程1,思考 观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗? (1)y=x2+x-2; (2)y=x2-6x+9; (3)y=x2-x+1.,二次函数与一元二次方程1,观察图象,完成下表:,0个,1个,2个,x2-x+1=0无解,0,x2-6x+9=0,x1=x2=3,-2, 1,x2+x-2=0,x1=-2,x2=1,二次函数与
6、一元二次方程1,知识要点,有两个交点,有两个不相等的实数根,b2-4ac 0,有两个重合的交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0,二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系,二次函数与一元二次方程1,例1:已知关于x的二次函数ymx2(m2)x2(m0) (1)求证:此抛物线与x轴总有两个交点; (2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值,(1)证明:m0, (m2)24m2m24m48m(m2)2. (m2)20, 0, 此抛物线与x轴总有两个交点;,二次函数与一
7、元二次方程1,(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?,你能结合图形指出为什么球不能达到20.5m的高度?,20.5,解方程: 20.5=20t-5t2, t2-4t+4.1=0, 因为(-4)2-4 4.10, 所以方程无解. 即球的飞行高度达不到20.5米.,h=20t-5t2,二次函数与一元二次方程1,(2)解:令y0,则(x1)(mx2)0, 所以 x10或mx20, 解得 x11,x2 . 当m为正整数1或2时,x2为整数,即抛物线与x轴总有两个交点,且它们的横坐标都是整数 所以正整数m的值为1或2.,例1:已知关于x的二次函数ymx2(m2)x2(m0) (
8、1)求证:此抛物线与x轴总有两个交点; (2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值,二次函数与一元二次方程1,变式:已知:抛物线yx2axa2. (1)求证:不论a取何值时,抛物线yx2axa2与x轴都有两个不同的交点; (2)设这个二次函数的图象与x轴相交于A(x1,0),B(x2,0),且x1、x2的平方和为3,求a的值,(1)证明:a24(a2)(a2)240, 不论a取何值时,抛物线yx2axa2与x轴都有两个不同的交点; (2)解:x1x2a,x1x2a2, x1(2)x2(2)(x1x2)22x1x2a22a43, a1.,二次函数与一元二次方程1,
9、例2如图,丁丁在扔铅球时,铅球沿抛物线 运行,其中x是铅球离初始位置的水平距离,y是铅球离地面的高度. (1)当铅球离地面的高度为2.1m时,它离初始位置的水平距离是多少? (2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少? (3)铅球离地面的高度能否达 到3m?为什么?,二次函数与一元二次方程1,解 (1)由抛物线的表达式得 即 解得 即当铅球离地面的高度为2.1m时,它离初始 位置的水平距离是1m或5m.,(1)当铅球离地面的高度为2.1m时,它离初始位置的水平距离是多少?,二次函数与一元二次方程1,(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少?
10、,(2)由抛物线的表达式得 即 解得 即当铅球离地面的高度为2.5m时,它离初始位 置的水平距离是3m.,二次函数与一元二次方程1,(3)由抛物线的表达式得 即 因为 所以方程无实根. 所以铅球离地面的高度不能达到3m.,(3)铅球离地面的高度能否达到3m?为什么?,二次函数与一元二次方程1,一元二次方程与二次函数紧密地联系起来了.,二次函数与一元二次方程1,例3:求一元二次方程 的根的近似值(精确到0.1).,分析:一元二次方程 x-2x-1=0 的根就是抛物线 y=x-2x-1 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方
11、法叫作图象法.,二次函数与一元二次方程1,解:画出函数 y=x-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.,二次函数与一元二次方程1,先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:,观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1-0.4. 同理可得另一近似值为x22.4.,二次函数与一元
12、二次方程1,一元二次方程的图象解法,利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.,(1)用描点法作二次函数 y=2x2+x-15的图象;,(2)观察估计二次函数 y=2x2+x-15的图象与x轴的交点的横坐标;,由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);,(3)确定方程2x2+x-15=0的解;,由此可知,方程2x2+x-15=0的近似根为:x1-3,x22.5.,二次函数与一元二次方程1,例4:已知二次函数yax2bxc的图象如图所示,则一元二次方程ax2bxc0的近似根为(
13、) Ax12.1,x20.1 Bx12.5,x20.5 Cx12.9,x20.9 Dx13,x21,解析:由图象可得二次函数yax2bxc图象的对称轴为x1,而对称轴右侧图象与x轴交点到原点的距离约为0.5,x20.5;又对称轴为x1,则 1,x12(1)0.52.5.故x12.5,x20.5.故选B.,B,二次函数与一元二次方程1,解答本题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确,二次函数与一元二次方程1,问题1 函数y=ax2+bx+c的图象如图,那么 方程ax2+bx+c=0的根是 _ _; 不等式ax2+bx+
14、c0的解集 是_; 不等式ax2+bx+c0的解集 是_.,y,x1=-1, x2=3,x3,-1x3,合作探究,二次函数与一元二次方程1,拓广探索:,函数y=ax2+bx+c的图象如图,那么 方程ax2+bx+c=2的根是 _; 不等式ax2+bx+c2的解集是_; 不等式ax2+bx+c2的解集是_.,3,-1,O,x,2,(4,2),(-2,2),x1=-2, x2=4,x4,-2x4,y,二次函数与一元二次方程1,问题2:如果不等式ax2+bx+c0(a0)的解集是x2 的一切实数,那么函数y=ax2+bx+c的图象与 x轴有_ 个交点,坐标是_.方程ax2+bx+c=0的根是_.,1
15、,(2,0),x=2,2,O,x,二次函数与一元二次方程1,问题3:如果方程ax2+bx+c=0 (a0)没有实数根,那么函数y=ax2+bx+c的图象与 x轴有_个交点; 不等式ax2+bx+c0的解集是多少?,0,解:(1)当a0时, ax2+bx+c0无解;,(2)当a0时, ax2+bx+c0的解集是一切实数.,3,-1,O,x,二次函数与一元二次方程1,试一试:利用函数图象解下列方程和不等式: (1) -x2+x+2=0; -x2+x+20; -x2+x+20; x2-4x+40; -x2+x-20.,x1=-1 , x2=2,1 x2,x1-1 , x22,x2-4x+4=0,x=
16、2,x2的一切实数,x无解,-x2+x-2=0,x无解,x无解,x为全体实数,二次函数与一元二次方程1,知识要点,有两个交点x1,x2 (x1x2),有一个交点x0,没有交点,二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系,y0,x1xx2. y0,x2x或xx2 .,y0,x1xx2. y0,x2x或xx2.,y0.x0之外的所有实数;y0,无解,y0.x0之外的所有实数;y0,无解.,y0,所有实数;y0,无解,y0,所有实数;y0,无解,二次函数与一元二次方程1,判断方程 ax2+bx+c =0 (a0,a,b,c为常数)一个解x的范围是( ) A. 3 x 3
17、.23 B. 3.23 x 3.24 C. 3.24 x 3.25 D. 3.25 x 3.26,C,1.根据下列表格的对应值:,当堂练习,二次函数与一元二次方程1,2若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2= ;,-1,3.一元二次方程 3x2+x10=0的两个根是x1=2 ,x2= ,那么二次函数 y= 3x2+x10与x轴的交点坐标是 .,(-2,0) ( ,0),二次函数与一元二次方程1,4.若一元二次方程 无实根,则抛物线 图象位于( ) A.x轴上方 B.第一、二、三象限 C.x轴下方 D.第二、三
18、、四象限,A,5.二次函数ykx26x3的图象与x轴有交点,则k的取值范围是() Ak3 Bk3且k0 Ck3 Dk3且k0,D,二次函数与一元二次方程1,6.已知函数y(k3)x22x1的图象与x轴有交点,求k的取值范围,解:当k3时,函数y2x1是一次函数 一次函数y2x1与x轴有一个交点, k3; 当k3时,y(k3)x22x1是二次函数 二次函数y(k3)x22x1的图象与x轴有交点, b24ac0. b24ac224(k3)4k16, 4k160.k4且k3. 综上所述,k的取值范围是k4.,二次函数与一元二次方程1,7.某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面 米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度版权购买合同标的版权内容与价格谈判3篇
- 2024-2025学年高中英语 Unit 23 Conflict Section Ⅶ Writing-投诉信(教师用书)说课稿 北师大版选修8
- 《数据库设计》课件
- 2024年度科研项目合作与成果共享合同
- 2024年度技术服务费用担保合同3篇
- 2024年度商业物业维修合同
- 防水卷材购销及质量检测合同(二零二四年)3篇
- 二零二四年度防水材料废弃物处理合同2篇
- 2024年度物流公司与制造商之间的供应链管理合同3篇
- 2024年港口码头涵洞拓宽劳务分包协议3篇
- 安装工程估价智慧树知到期末考试答案章节答案2024年山东建筑大学
- 2024年中考历史(辽宁卷)真题评析
- 酒店数字化运营概论 课件 项目四 酒店新媒体推广认知
- 2024年东南亚健身房和俱乐部健身跟踪器市场深度研究及预测报告
- 2024-2030年塔格糖行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 《中国传统建筑》课件-中国民居建筑
- 家庭教育主题家长会(3篇模板)
- 第13课 太空新居(教学设计)2023-2024学年美术五年级上册 人教版
- 广东省医疗收费项目《一、综合医疗服务类》
- 物流生涯职业规划总结报告
- 基于STM32的车辆综合无线监控系统设计
评论
0/150
提交评论