版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、公式法解一元二次方程,用公式法解一元二次方程,公式法解一元二次方程,二、用配方解一元二次方程的步骤是什么?,一、用配方法解下列方程 2x-12x+10=0,公式法解一元二次方程,1、若二次项系数不是1,把二次项系数化为1(方程两边都除以二次项系数); 2、把常数项移到方程右边; 3、在方程的两边各加上一次项系数绝对值的一半的平方,使左边成为完全平方; 4、如果方程的右边整理后是非负数,用直接开平方法解之,如果右边是个负数,则指出原方程无实根。,公式法解一元二次方程,公式法是这样生产的,你能用配方法解方程 ax2+bx+c=0(a0)吗?,1.化1:把二次项系数化为1;,3.配方:方程两边都加上
2、一次项系数绝对值一半的平方;,4.变形:方程左分解因式,右边合并同类;,5.开方:根据平方根意义,方程两边开平方;,6.求解:解一元一次方程;,7.定解:写出原方程的解.,2.移项:把常数项移到方程的右边;,公式法解一元二次方程,一般地,对于一元二次方程 ax2+bx+c=0(a0),上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法,当 时,方程有实数根吗,公式法解一元二次方程,公式法,例1、用公式法解方程 5x2-4x-12=0,1.变形:化已知方程为一般形式;,3.计算: b2-4ac的值;,4.代入:把有关数值代入公式计算;,5.定根:写出原方程的根.,
3、2.确定系数:用a,b,c写出各项系数;,公式法解一元二次方程,例2.用公式法解方程2x2+5x-3=0 解: a=2 b=5 c= -3 b2-4ac=52-42(-3)=49, x = = =,即 x1= - 3 x2=,求根公式 : X=,(a0, b2-4ac0),公式法解一元二次方程,(口答)填空:用公式法解方程 2x2+x-6=0,求根公式 : X=,(a0, b2-4ac0),公式法解一元二次方程,a= ,b= ,c = . b2-4ac= = . x= = = . 即 x1= , x2= .,例3:用公式法解方程x2+4x=2,1,4,-2,42-41(-2),24,求根公式
4、: X=,(a0, b2-4ac0),解:移项,得 x2+4x-2=0,这里的a、b、c的值是什么?,公式法解一元二次方程,3、代入求根公式 : X= (a0, b2-4ac0),1、把方程化成一般形式,并写出a,b,c的值。 2、求出b2-4ac的值。,用公式法解一元二次方程的一般步骤:,求根公式 : X=,4、写出方程的解: x1=?, x2=?,(a0, b2-4ac0),公式法解一元二次方程,练习: 用公式法解下列方程: 1、x2 +2x =5 2、 6t2 -5 =13t,公式法解一元二次方程,例4,解:,公式法解一元二次方程,例 用公式法解方程: x2 x - =0,解:方程两边同
5、乘以 3 得 2 x2 -3x-2=0 a=2,b= -3,c= -2. b2-4ac=(-3) 2-42(-2)=25.,x=,即 x1=2, x2= -,例 用公式法解方程: x2 +3 = 2 x,解:移项,得 x2 -2 x+3 = 0,a=1,b=-2 ,c=3,b2-4ac=(-2 )2-413=0,x=,x1 = x2 =,=,=,=,=,公式法解一元二次方程,练习:用公式法解方程 1、 x - x -1= 0 2、 2x - 4 x+2= 0,公式法解一元二次方程,求根公式 : X=,由配方法解一般的一元二次方程 ax2+bx+c=0 (a0) 若 b2-4ac0得,1、把方程
6、化成一般形式,并写出a,b,c的值。 2、求出b2-4ac的值。 3、代入求根公式 :,用公式法解一元二次方程的一般步骤:,小结,4、写出方程的解: x1=?, x2=?,(a0, b2-4ac0),X=,公式法解一元二次方程,知识的升华,祝你成功!,公式法解一元二次方程,思考题: 1、关于x的一元二次方程ax2+bx+c=0 (a0)。 当a,b,c 满足什么条件时,方程的两根为互为相反数? 2、m取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实数解,公式法解一元二次方程,想一想:,关于一元二次方程,,当,a,b,c满足什么条件时,方程的两根互,为相反数?,解:,公式法解一元二次方程,提高练习,已知方程2X+7X+c=0,方程的根为一个实数, 求c和x的值.,公式法解一元二次方程,解:,公式法解一元二次方程,现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm的无盖的长方体盒子,那么
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《乳腺癌外科治疗》课件
- 项目制度、职责修改稿 20130530
- 2024年砂洲土地租赁标准协议版B版
- 2024年货运代理合同
- 2024年货物运输安全保证协议
- 2024年租赁协议修正案3篇
- 2024年设备全国总代理合同3篇
- 2024智能化多场景生产线销售协议版B版
- 2024汪颖离婚协议书:财产分割、子女抚养及共同债务处理3篇
- 2024幼儿园园长幼儿科技创新教育聘用合同3篇
- 国家开放大学电大本科《工程经济与管理》2023-2024期末试题及答案(试卷号:1141)
- TBT3134-2023机车车辆驱动齿轮箱 技术要求
- 河北省石家庄市桥西区2022-2023学年七年级上学期期末地理试卷
- GB 16844-1997普通照明用自镇流灯的安全要求
- 供热企业安全风险隐患辨识清单
- 矩形沉井计算表格(自动版)
- 沪教牛津版五年级下册英语全册课件
- 湘艺版 四年级上册音乐教案- 第十课 我心爱的小马车
- 前置胎盘的手术配合课件
- 鱼骨图模板1PPT课件
- 中国动画之经典赏析PPT课件
评论
0/150
提交评论