数学物理方法试卷5答案_第1页
数学物理方法试卷5答案_第2页
数学物理方法试卷5答案_第3页
数学物理方法试卷5答案_第4页
数学物理方法试卷5答案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、物理系 20 20 学年第 学期期末考试 数学物理方法试卷(A)考试时间:120分钟 考试方式:闭卷班级 专业 姓名 学号 题 号一二三四五总 分得 分核分人一、填空题(本大题共9题,每空2分,共24分)1、写出复数1+i的三角式,指数式 。2、中代表复平面上位于ab线段中垂线上点。3、幂级数的收敛半径为 。4、复变函数可导的充分必要条件存在,并且满足柯西-黎曼方程 。5、在Z=0的邻域上的泰勒级数是(至少写出前三项)=。6、若周期函数f (x)是奇函数,则可展为傅立叶正弦级数f (x)= 展开系数为 。 7、就奇点的类型而言,Z=是函数f(z)=的 可去 奇点,Z=0是函数的 单极 点。8、

2、三维波动方程形式。9、拉普拉斯方程在球坐标系中的表达式为:。二、简答题(本大题共3题,每题8分,共24分)1、 分别简述单通区域和复通区域下的柯西定理。 单通区域柯西定理:如果函数在闭单通区域B上解析,则沿B上任一段光滑闭合曲线,有; (4分)复通区域柯西定理:如果函数是闭复通区域上的单值解析函数,则,式中为区域外界境线,诸为区域内界境线,积分均沿界境线正方向进行。 (4分)2、长为的均匀弦,两端 和 固定,弦中张力为T0,在点,以横向力F0拉弦,达到稳定后放手任其自由振动,写出初始条件。 解: 由点斜式方程,弦的初始位移为 (2分)其中 c 为弦在 x h 点的初始位移。因为是小振动,所以(

3、2分)写出水平、竖直方向的力平衡方程式:(2分)解得 ,将之代入初始位移(1),得 (2分) 3、写出l阶勒让德多项式的具体表达式,具体写出前3个勒让德多项式。答:l阶勒让德多项式的具体表达式为: (4分) 记号l/2表示不超过 l/2的最大整数。(这由x的指数得知,k0的项即为系数为a0或a1的项。)经由上式计算,前3个勒让德多项式是 (4分)三、 计算题 (本大题共2题,每题10分,共20分)1、计算回路积分(l的方程是)。解:的方程可化简为:,在复平面上它是以(-1,-i)为圆心,为半径的圆, (1分)被积函数有两个单极点,和一个二阶极点,在这三个极点中,在积分回路内,它们的留数: (3

4、分) (3分)应用留数定理: (3分)2、计算实变函数积分I=。解:这是属于类型一的积分,为此,做变换使原积分化为单位圆内的回路积分f(z)有两个单极点在单位圆内,且所以四、求解定解问题(本大题共1题,共16分) 解:利用分离变数法:,代入范定方程(1),分离变量,得到: 两边分别是时间t和坐标x的函数,除非两边等于一个常数,记作,可得到t和x所满足的常微分方程,如下: (3分)同时把代入边界条件得: 因为是第二类边界条件,当=0时,方程的解是,代入边界条件得:D0=0, 所以; (1分)当0时,T满足的常微分方程的通解是: (2分)代入边界条件,确定系数 由于,则得无意义的0解,所以只有:,

5、则于是,求出本征值: (n=1,2,3 ) 现在把0情况的本征值和本征函数合在一起,相应的本征函数是:为任意常数 (3分) 对于每一个本征值, 代入方程 中可得到: 和 相应方程 的解为: (2分) 其中,An , B n 为任意常数。则满足的方程的本征解为:方程一般解是所有本征解的线性叠加,即:(3分)代入初始条件 上式的左端是傅立叶余弦级数,把右边的 和 展开为傅立叶余弦级数,然后比较两边的系数就可以确定系数, (2分) 装 订 线 内 请 勿 答 题.装.订.线.装.订.线五、应用题(本大题共1题,共16分)如图所示,推导一维和三维扩散方程,已知扩散系数为。解:在扩散问题中研究的是浓度在空间中的分布和在时间中的变化,选取长、宽、高分别是,的六面体小微元作为研究对象,已知扩散现象遵循扩散定律: (3分)该定律的分量形式:,如图所示的六面体里浓度的变化取决于穿过它的表面的扩散流。由扩散定律,先考虑单位时间内x方向上扩散流为:因在左表面处,流入六面体的流量为,在右表面流出去的流量为,取得很小,则单位时间内x方向净流入流量为 (3分)分别考虑y,z方向上的扩散流,同理可得单位时间内y方向净流入流量为单位时间内z方向净流入

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论