




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4.2.1直线与圆的位置关系,一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的范围是半径长为30km的圆形区域已知港口位于台风中心正北40km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?,为解决这个问题,我们以台风中心为原点 O,东西方向为 x 轴,建立如图所示的直角坐标系,其中取 10km 为单位长度,实例引入,问题,实例引入,问题,轮船航线所在直线 l 的方程为:,问题归结为圆心为O的圆与直线l有无公共点,这样,受台风影响的圆区域所对应的圆心为O的圆的方程为:,想一想,平面几何中,直线与圆有哪几种位置关系?,平面几何中,直线与圆有三
2、种位置关系:,(1)直线与圆相交,有两个公共点;,(2)直线与圆相切,只有一个公共点;,(3)直线与圆相离,没有公共点,直线与圆的位置关系,问题,在初中,我们怎样判断直线与圆的位置关系?现在,如何用直线和圆的方程判断它们之间的位置关系?,直线与圆的位置关系,问题,先看几个例子,看看你能否从例子中总结出来,分析:方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解; 方法二,可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系,例1 如图,已知直线l: 和圆心为C的圆 ,判断直线 l 与圆的位置关系;如果相交,求它们交点的坐标,典型例题,解法一:由直线 l 与圆的
3、方程,得:,消去y,得:,例1 如图,已知直线l: 和圆心为C的圆 ,判断直线 l 与圆的位置关系;如果相交,求它们交点的坐标,典型例题,因为:,= 1 0,所以,直线 l 与圆相交,有两个公共点,解法二:圆 可化为,其圆心C的坐标为(0,1),半径长为 ,点C (0,1)到直线 l 的距离,所以,直线 l 与圆相交,有两个公共点,典型例题,例1 如图,已知直线l: 和圆心为C的圆 ,判断直线 l 与圆的位置关系;如果相交,求它们交点的坐标,所以,直线 l 与圆有两个交点,它们的坐标分别是:,把 代入方程,得 ;,把 代入方程 ,得 ,A(2,0),B(1,3),由 ,解得:,例1 如图,已知
4、直线l: 和圆心为C的圆 ,判断直线 l 与圆的位置关系;如果相交,求它们交点的坐标,典型例题,解:,解:将圆的方程写成标准形式,得:,即圆心到所求直线的距离为 ,如图,因为直线l 被圆所截得的弦长是 ,所以弦心距为,例2 已知过点 的直线被圆 所截得的弦长为 ,求直线的方程,典型例题,因为直线l 过点 ,,即:,根据点到直线的距离公式,得到圆心到直线l 的距离:,因此:,典型例题,例2 已知过点 的直线被圆 所截得的弦长为 ,求直线的方程,解:,所以可设所求直线l 的方程为:,即:,两边平方,并整理得到:,解得:,所以,所求直线l有两条,它们的方程分别为:,或,典型例题,例2 已知过点 的直线被圆 所截得的弦长为 ,求直线的方程,解:,即:,判断直线与圆的位置关系有两种方法:,方法一:判断直线l与圆C的方程组成的方程组是否有解如果有解,直线l与圆C有公共点有两组实数解时,直线l与圆C相交;有一组实数解时,直线l与圆C相切;无实数解时,直线l与圆C相离,方法二:判断圆C的圆心到直线l的距离d与圆的半径r的关系如果d r ,直线l与圆C相离,直线与圆的位置关系,回顾我们前面提出的问题:如何用直线和圆的方程判断它们之间的位置关系?,问题,知识小结,有无交点,有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新规定:实习生也需签订劳动合同
- 2025【范本】房屋租赁合同协议
- 2025简易个人借款合同书范本下载
- 2025体育赛事组委会责任保险合同样本
- 2025墓地使用权转让合同
- 2025项目环境监测评估验收技术服务合同
- 2025房屋买卖合同模板2
- 2025交通运输合同协议
- 2025解除租赁合同协议书
- 西北狼联盟2025届高三仿真模拟(二)历史试题试卷含解析
- 2024年职业病防治考试题库附答案(版)
- GB/T 4706.53-2024家用和类似用途电器的安全第53部分:坐便器的特殊要求
- 《智能网联汽车用摄像头硬件性能要求及试验方法》编制说明
- 2024年3月ITSMS信息技术服务管理体系基础(真题卷)
- 节能评审和节能评估文件编制费用收费标准
- 2023-2024年《劳务劳动合同样本范本书电子版模板》
- 中国居民口腔健康状况第四次中国口腔健康流行病学调查报告
- MOOC 数据挖掘-国防科技大学 中国大学慕课答案
- 中药注射剂合理使用培训
- 第13课+清前中期的兴盛与危机【中职专用】《中国历史》(高教版2023基础模块)
- 2024年国家粮食和物资储备局直属事业单位招聘笔试参考题库附带答案详解
评论
0/150
提交评论