用平移坐标法探究平行四边形的存在性问题_第1页
用平移坐标法探究平行四边形的存在性问题_第2页
用平移坐标法探究平行四边形的存在性问题_第3页
用平移坐标法探究平行四边形的存在性问题_第4页
用平移坐标法探究平行四边形的存在性问题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初探动态几何综合题解法坐标系下平行四边形的存在性问题石柱初中 章玲一、设计意图平面直角坐标系中图形位置的确定,是综合性较强、难度较大的一类问题,也是中考中的热点问题。本节课是从综合题中抽取出几何模型,把综合题分解为若干小综合题,通过一题多变,由易到难的引申,实现对常规方法的归纳和总结。本节课还注意对数学思想方法的复习,始终强调数形结合的基本思想,强化分类讨论的意识和方法。二 、教学目标设计 1.知识与技能:(1)通过将ABC补成平行四边形复习平行四边形的判定,进一步理解图形变换;(2)再把几何图形放在了平面直角坐标系中,对图形顶点的坐标求法进行归纳和总结,复习相关知识的目的的同时,也为后续例题的解决作好铺垫;(3)通过对复杂条件的一步步加深,及时总结,掌握从众多的条件中确定类型,提高学生的解题能力;2. 过程与方法: (1)综合题中的几何模型【引例】,铺垫到位,总结作图定位的依据和方法;(2) 将专题细化,一题多变,充分引申,最大限度的发挥例题的作用。掌握数学解题策略,争取提升小综合题的解决能力;(3) 通过几何画板的使用,直观的展示思维轨迹,提高课堂效率。3.情感态度与价值观: (1)通过一题多变活跃思维,学会倾听他人的解题思路,理解他人的解法; (2)通过题后小结,提高复习效果,同时提高解题能力.三、教学过程: 【考题再现】(2013年昆明压轴题)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由此题考查了二次函数综合题,涉及的知识有:待定系数法确定抛物线解析式,一次函数与二次函数的交点,平行四边形的性质,以及坐标与图形性质,是一道多知识点的探究型试题【引例】如图1,请将ABC补成平行四边形。图1方法1 过顶点画对边平行线,三条平行线的交点就是第四个顶点。方法2 以AB为平行四边形的一边或是对角线进行分类,从而得到第四个顶点。图 2引申:将平行四边形放在平面直角坐标系下,如何求点的坐标?【探究1】三个定点,一个动点,探究平行四边形的存在性例 1 如图,在平面直角坐标系中A(-1,0)、B(3,0)、C(0,-3),请在平面内找一个点D,使得以点A、B、C、D为顶点的四边形为平行四边形,先画出点D的位置,再写出点D的坐标;已知三点,求第四点方法归纳: 构造全等及平移 中点的算法:若M(x1,y1),N(x2,y2),则其中点坐标为(),即有同一条对角线上的两个顶点的横坐标之和相等,;同一条对角线上的两个顶点的纵坐标之和相等,.【推广与应用】1、已知A、B、C三点的坐标分别为(3,7),(1,2),(6,4),求点D的坐标使四边形ABCD成为平行四边形;变式1:求点D的坐标,使以A、B、C、D为顶点的四边形为平行四边形;变式2:将ABC绕AC的中点P旋转180,点B落到点 B的位置,求点B的坐标.点评:本题已知三个定点坐标的具体数值,可以根据坐标平移或中点算法直接写出第四个顶点的坐标值得注意的是,若没有约定由三点构成的三条线段中哪条为边或对角线,则三种情况都必须考虑【探究2】二个定点,二个动点,探究平行四边形的存在性例2 如图,在平面直角坐标系中A(-1,0)、B(3,0),以及一个不定点C,记为C(a,b),请在平面内找一个点D,使得以点A、B、C、D为顶点的四边形为平行四边形,画出点D的位置并求出坐标;(用含a,b的式子表示) 点评:本题已知三个定点坐标,虽不是具体数值(含字母a,b),但依然可以根据坐标平行四边形的性质直接写出第四个顶点的坐标看上去此法冗长,三种情况必须逐一探究,但思路简单,解题严谨,不易遗漏例3 抛物线与x轴交于A、B,抛物线的顶点为C,点D在抛物线的对称轴上,点E在抛物线上,且以B、A、D、E四点为顶点的四边形为平行四边形,求点E的坐标分析过程:由得到A(-1,0),B(3,0),点C(1,-4) ,设点D(1,a) (1) 平行四边形以AB为边时,得E1(5,a),E2(-3,a),将E1(5,a)代入,得,E1(5,12);将E2(-3,a)代入,得,E2(-3,12).(2) 平行四边形以AB为对角线,得E3(1,-a),将其代入,得,a=4,E3(1,-4)点评:先假设一个动点的坐标,将其看成一个定点,按照平行四边形横纵坐标之和分别相等的性质,写出第四个顶点的坐标再由另一动点应满足的条件,求出相应的坐标【巩固练习】抛物线与轴交于点A,点B在直线上,O为坐标原点,点P是抛物线上一动点,若以B、A、O、P四点为顶点的四边形为平行四边形,求出点B的坐标;【总结与提升】方法总结:【自我检测】如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得E(2,3),设抛物线解析式为,将A(4,0)坐标代入得:0=4a+3,即,则抛物线解析式为;(2)设直线AC解析式为y=kx+b(k0),将A(4,0)与C(0,3)代入得,解得,故直线AC解析式为,与抛物线解析式联立得,解得或,则点D坐标为;(3)已知A(4,0), D ,设N(m,0),则,,分别代入,将代入,得,解得将代入,得,解得将代入,得-,解得综上所述,满足条件的点N有4个:,.点评:本题中M、N点都是动点,学生难以探索,而先变其中一动点为定点,在确定第四点,在找第四点所必须满足的条件,建立方程,这种方法不必分析复杂的图形,降低了分析的难度,也不会出现遗漏的现象,学生比较容易掌握四、教学反思存在性问题是近年来各地中考的热点,其图形复杂,不确定因素较多,对学生的知识运用分析能力要求较高,有一定的难度用动态的观点看待几何图形,把平行四边形存在性问题,用数的运算来描述图形的变化,其本质是用几何变换去认识几何图形,用代数方法来解决几何问题,体现的是解析几何的思想、数形结合的思想、几何变换的思想探索平行四边形存在性问题的思路:先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标) 再画出以三点为顶点的平行四边形,根据坐标平移或平行四边形的性质写出第四个顶点的坐标最后根据题目的要求(动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论