已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
矿井提升机直流调速系统设计摘 要矿井提升机也称矿井卷扬机,是生产过程中的大型关键设备,也是井上和井下的唯一输送通道。提升机主要用于升降人员和矿石、煤炭等,其性能和安全可靠性直接影响着煤炭、矿石的生产及作业人员的生命安全,一旦发生事故必然导致人员伤亡和设备的严重损坏,造成重大的经济损失。因此,素有“矿山咽喉”之称。矿井提升机种类繁多,按照井道结构分,有立井与斜井;按照传动电机分为交流传动和直流传动;按容器功能分,则有箕斗和罐笼;按钢丝绳结构方式分,则有单绳和多绳摩擦轮提升机;按矿井功能分为主井(输送矿产品)与副井(输送人员与材料等);按提车点的多少分为单水平和多水平提升机。纵观电气传动系统的发展历程,它经历了从恒速到调速,从低性能到高性能,从单机独立运行到多机系统控制等发展过程。随着技术的发展,矿井提升机对电气传动在起制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面都提出了更高的要求,这就要求大量使用调速系统。在工程实践中多有许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的静、动态性能。本文中讲到的主要是矿井提升机的双闭环直流调速系统。关键词:矿井提升机,直流调速,双闭环系统,动态性能 Mine hoist double loop DC speed control systemABSTRACTMine elevator also said the mine hoist, is a large-scale production process key equipment and the only aboveground and underground transmission channel. It was mainly used for lifting personnel hoist and ore, coal, performance and reliability of its direct impact on the coal, ore production and the lives of workers. In case of accidents will inevitably lead to casualties and serious damage to the equipment, mining normal production Interrupted, resulting in significant economic losses, known as mine throat . A wide range of mine hoist, shaft structure in accordance with points, a shaft and shaft; in accordance with the drive motor points for the AC drive and DC drive machine; feature points by the container, there are skip and cage; by way of sub-rope structure, the A single rope and hoist Friction wheel: function points by the main mine shaft (transmission minerals) and the auxiliary shaft (transportation of personnel and materials, etc.); point by mentioning how many cars are divided into single-level and multi-level elevator. Throughout the course of development of electric drive systems, it has undergone from the constant speed to the speed, from low performance to high performance, from single to multi-machine system independently control the development process. As technology advances, the effect of the electric transmission brake, reversing and speed control accuracy, speed range, the static characteristics, dynamic response, have put forward higher requirements, which requires extensive use of speed control system. In engineering practice there are many more requirements of production machinery within a certain speed ramp, and requires good static and dynamic performance. Mentioned in this article are mainly of mine hoist Double loop DC speed control system.KEY WORDS: mine hoist,DC converter,double-loop system,dynamic performance目录前言1第1章 矿井提升机简介31.1 国内外提升机研究状况31.2 矿井提升机的组成及分类51.2.1 科技名词定义51.2.2 矿井提升机的组成61.2.3 矿井提升机的分类7第2章 矿井提升机直流调速系统简介82.1 晶闸管-电动机直流调速系统简介82.2 单闭环调速系统简介92.2.1 系统的组成92.2.2 系统的工作原理102.2.3 单闭环调速系统的基本性质112.3 双闭环调速系统简介112.3.1 双闭环调速系统的构成112.3.2 双闭环调速系统的稳态结构及其静态特性132.3.3 双闭环调速系统的动态特性162.3.4 双闭环调速系统的动态分析17第3章 矿井提升机直流双闭环调速系统方案确定203.1 总体方案203.2 电流环设计方案213.2.1 电流调节器的工作原理213.2.2 电流调节器的作用213.3 转速环设计方案223.3.1 转速调节器的工作原理223.3.2 转速调节器的作用22第4章 提升机双闭环直流调速系统调节器设计244.1 电流调节器244.1.1 电流调节器结构的选择244.1.2 电流调节器设计254.2 转速调节器264.2.1 转速调节器结构的选择264.2.2 转速调节器设计26第5章 提升机双闭环调速系统典型电路环节简析29第6章 提升机调速系统MATLAB仿真316.1 系统的建模与参数设置316.1.1 直流电动机的数学模型316.1.2 转速电流双闭环调速系统的数学模型316.1.3 建立仿真模型326.2 仿真结果33结论35谢 辞36参考文献37附录38外文资料翻译40前言我国是个采矿大国,也是矿山机电设备制造和使用大国。从20世纪50年代仿造第一台矿井提升机以来,至今已设计制造、使用了大量提升机设备。随着社会需要和现代技术的高速发展,矿山工业企业亟待生产设备及设施的机械化、电气化、现代化。而矿石工业的提升机是咽喉设备,产品不断更新换代,老产品运行年深日久,原本落后的结构问题暴露突出,故障增多,严重影响矿山的安全运行,抑制了矿山工业的高速发展,给国民经济带来了不良的影响。随着国内矿井产量日新月异的提高,对提高提升机的安全性、可靠性、生产效率以及整机自动化运行水平,降低操作者及维护人员的劳动强度、处理设备事故的速度与对策,成了迫切需求。从世界矿井提升机的发展趋势来看,各国为争夺用户市场,开发了各种形式、规格的提升机,以适应各国的矿井开采深度,达到高效、低能耗、低成本的目的。矿井提升机发展总趋势可归结为:在总体上向大负载、大型化方向发展。在提高矿井提升机的可靠性上也都非常重视,为此除了十分重视矿井提升机的制造质量外,在部件生产上都力求专业化生产(因为这不仅能降低成本,更重要的是提高质量)。在设计研究新技术上也有很大的投入,如为了提高生产效率,消除操作上的人为因素,在主井提升机上一般都配备有全自动提升运行装置。在副井提升上、提升机房内也不设提升操作员,而趋向于在提升容器内由使用人员直接控制提升机运行。再者,为确保提升设备无事故运行,在提升设备可能出故障的各个重要环节上,设双回路系统,并在系统的各个环节上设有各种检测、控制、自诊断以及记录和保护装置(如负载、速度、温度、加速度、产量、运行时间等)。因此在提升系统的检测、控制等各中元器件和检测系统的研究开发方面也做了很多工作。在计算机应用上,计算机和数控已经成为电控的普遍配置,一些大的矿井提升机生产企业,最近都开发了矿井提升系统专用计算机软件。另外不少有名公司,开发了提升容器运行时的负载动态自动检测、记录和控制装置。这样不仅能保证提升不过载,而且能防止提升钢丝绳的受力不平衡状态。技术是在不断发展的,机器结构的发展,一般是从简单到复杂,但有时在突破某一关键后,机器结构又从复杂到简单。如近年发展的内置式电动机卷筒交-交变频的矿井提升机,这种提升机的电气和电动机是复杂了,但机械的结构形式就很简单,机械的可靠性也大为提高,维护工作也是很少。实用、经济、高效、可靠的提升机产品是使用者和制造者的共同追求,本文中讲到的主要是矿井提升机的双闭环直流调速系统。 第1章 矿井提升机简介1.1 国内外提升机研究状况近三十年来,国外提升机机械部分和电气部分都得到了飞速的发展,而且两者相互促进,相互提高。起初的提升机是电动机通过减速器传动卷筒的系统,后来出现了直流慢速电动机和直流电动机悬臂安装直接传动的提升机。上世纪七十年代西门子发明矢量控制的交一直一交变频原理后,标志着用同步电动机来代替直流电机实现调速的技术时代已经到来。1981年第一台用同步机悬臂传动的提升机在德国Monopol矿问世,1988年由MAVGHH和西门子合作制造的机电一体的提升机(习惯称为内装电机式)在德国Romberg矿诞生了,这是世界上第一台机械和电气融合成一体的同步电机传动提升机。在提升机机械和电气传动技术飞速发展的同时,电子技术和计算机技术的发展,使提升机的电气控制系统更是日新月异。早在上世纪七十年代,国外就将可编程控制器(PLC)应用于提升机控制。上世纪八十年代初,计算机又被用于提升机的监视和管理。计算机和PLC的应用,使提升机自动化水平、安全、可靠性都达到了一个新的高度,并提供了新的、现代化的管理、监视手段。特别要强调的是,此时期在国外一些著名的提升机制造公司,如西门子、ABB、ALSTHOM都利用新的技术和装备,开发或完善了提升机的安全保护和监控装置,使安全保护性能又有了新的提高。就在国外科学技术突飞猛进发展的时候,我国提升机电控系统很长时间都处于落后的状况。直到目前为止,我国正在服务的矿井提升机电控系统大多数还是转子回路串金属电阻的交流调速系统,设备陈旧、技术落后。国产提升机安全性、可靠性差,在关键部位上下两井口减速区段没有配套的有效的速度监视装置,就提升机控制技术而言,依然是陈旧的,和国外相比,我们存在很大的差距。矿井提升系统的类型很多,按被提升对象分:主井提升、副井提升;按井筒的提升道角度分:竖井(如附录图1-1所示为竖井井架设备)和斜井;按提升容器分:箕斗提升、笼提升、矿车提升;按提升类型分:单绳缠绕式和多绳摩擦式等。我国常用的矿用提升机主要是单绳缠绕式和多绳摩擦式。我国的矿井与世界上矿业较发达的国家相比,开采的井型较小,矿井提升高度较浅,煤矿用提升机较多,其他矿(如金属矿、非金属矿)则较少。因此在20世纪60年代开始单绳缠绕式矿井提升机采用较多。目前我国提升机90%以上均采用交流绕线式异步电动机的拖动方式,其电控系统用于单绳缠绕式提升机的有TKD系列,多绳磨擦式提升机的有JKM、幻J系列。这几种提升机通常在电动机转子回路中串接附加电阻进行起动和调速。串电阻调速是一种恒转矩调速方法转子功率的损耗随着串入的电阻的增大而增大。尽管转子串电阻调速方法很不经济,低速特性也很软,稳定性差,但是由于这种调速方法比较简单易行,起动转矩较大在拖动起重机等中、小容量的绕线式异步电动机中仍然应用广泛。20世纪80年代,我国从瑞典、西德等国引进20多套晶闸管直流电动机控制系统。直流电动机传动有两种电控系统,一种为直流发电机直流电动机机组,另一种为晶闸管直流电动机系统。我国自己生产的晶闸管直流电动机控制系统应用于20世纪90年代。这种控制系统的优点是:体积小、重量轻、占地面积小;基础省、安装方便、建筑费用低;无齿轮传动部分(不需要减速器)、总效率高、电能消耗少;单机容量大,适用范围广;调速平稳、调速范围广、调速精度高;易于控制,能实现自动化,安全可靠;节约电能。矿井提升机对安全性、可靠性和调速性能的特殊要求,使得提升机电控系统的技术水平在一定程度上代表一个厂或国家的传动控制技术水平。比较国内外矿用提升机系统,具体来说国外矿井提升机在电控方面的应用特点有以下几个方面:(l)提升工艺过程微机控制提升工艺过程大都采用微机控制,由于微机功能强,使用灵活,运算速度快,监视显示易于实现,并具有诊断功能,这是采用模拟控制无法实现的。(2)提升行程控制提升机的控制从本质上说是一个位置控制,要保证提升容器在预定地点准确停车,要求准确度高,目前可达到2cm。采用微机控制,可通过采集各种传感信号,如转角脉冲变换、钢丝绳打滑、井筒、滚筒及钢丝绳磨损等信号进行处理,计算出容器准确的位置而施以控制和保护。一般过程控制用微机作监视,行程控制也采用单独下位机完成。(3)提升过程监视提升过程监视与安全回路一样,是现代提升机控制的重要环节。提升过程采用微机主要完成如下参数的监视: a、提升过程中各工况参数(如速度、电流)监视;b、各主要设备运行状态监视;c、各传感器(如位置开关、停车开关)信号的监视。使各种故障在出现之前就得以处理,防止事故的发生,并对各被监视参数进行存储、保留或打印输出,甚至与上位机联网,合并于矿井监测系统中。(4) 安全回路安全回路是指提升机在出现机械、电气故障时控制提升机进入安全保护状态的极为重要的环节。为确保人员和设备的安全,对不同故障一般采用不同的处理方法。安全回路极为重要,它是保护的最后环节之一,英、德几家公司都采用两台PC微机构成安全回路,使安全回路具有完善的故障监视功能,无论是提升机还是安全回路本身出项故障时都能准确地实施安全制动。而在电力拖动方面,近几年国外出现了不少新拖动方式,交一交变频供电方式就是最有前途的一种。20世纪80年代西欧一些工业先进国家将交流变频调速技术应用于提升机,有代表性的是西门子公司和ABB公司。我国在20世纪90年代也引进了交流变频调速提升机控制系统。变频调速方式类似于它励直流电动机取得很宽的调速范围、很好的调速平滑性和有足够硬度的机械特性,在提升机应用中显示了其独特的优势。1.2 矿井提升机的组成及分类1.2.1 科技名词定义中文名称:矿井提升机英文名称:mine winder , mine hoist其他名称:矿井卷扬机,绞车,矿井绞车定义:安装在地面,借助于钢丝绳带动提升容器沿井筒或斜坡道运行的提升机械。分“缠绕式提升机(mine drum winder)”和“摩擦式提升机(mine friction winder)”。名片:矿井提升机是矿井井下和地面的工作机械。图1-1矿井提升机工作机械 说明:矿井提升机是一种大型绞车。用钢丝绳带动容器(罐笼或箕斗)在井筒中升降,完成输送物料和人员的任务。矿井提升机是由原始的提水工具逐步发展演变而来。现代的矿井提升机提升量大,速度高,已发展成为电子计算机控制的全自动重型矿山机械。1.2.2 矿井提升机的组成矿井提升机主要由电动机、减速器、卷筒(或摩擦轮)、制动系统、深度指示系统、测速限速系统和操纵系统等组成,采用交流或直流电机驱动。按提升钢丝绳的工作原理分缠绕式矿井提升机和摩擦式矿井提升机。缠绕式矿井提升机有单卷筒和双卷筒两种,钢丝绳在卷筒上的缠绕方式与一般绞车类似。单筒大多只有一根钢丝绳,连接一个容器。双筒的每个卷筒各配一根钢丝绳,连接两个容器,运转时一个容器上升,另一个容器下降。缠绕式矿井提升机大多用于年产量在120万吨以下、井深小于400米的矿井中。摩擦式矿井提升机的提升绳搭挂在摩擦轮上,利用与摩擦轮衬垫的摩擦力使容器上升。提升绳的两端各连接一个容器,或一端连接容器,另一端连接平衡重。摩擦式矿井提升机根据布置方式分为塔式摩擦式矿井提升机(机房设在井筒顶部塔架上)和落地摩擦式矿井提升机(机房直接设在地面上)两种。按提升绳的数量又分为单绳摩擦式矿井提升机和多绳摩擦式矿井提升机。后者的优点是:可采用较细的钢丝绳和直径较小的摩擦轮,从而机组尺寸小,便于制造;速度高、提升能力大、安全性好。年产120万吨以上,井深小于2100米的竖井大多采用这种提升机。1.2.3 矿井提升机的分类矿井提升机种类繁多,按照井道结构分,有立井与斜井;按照传动电机分为交流传动和直流传动提升机;按容器功能分,则有箕斗和罐笼;按钢丝绳结构方式分,则有单绳和多绳摩擦轮提升机;按矿井功能分为主井(输送矿产品)与副井(输送人员与材料等);按提车点的多少分为单水平和多水平提升机。第2章 矿井提升机直流调速系统简介调速系统是当今电力拖动自动控制系统中应用最普遍的一种系统。目前,需要高性能可控电力拖动的领域多数都采用直流调速系统。2.1 晶闸管-电动机直流调速系统简介20世纪50年代末,晶闸管(大功率半导体器件)变流装置的出现,使变流技术产生了根本性的变革,开始进入晶闸管时代。由晶闸管变流装置直接给直流电动机供电的调速系统,称为晶闸管-电动机直流调速系统,简称V-M系统,又称为静止的Ward-leonard系统。这种系统已成为直流调速系统的主要形式。图2-1是V-M系统的简单原理图。图中V是晶闸管变流装置,可以是单相、三相或更多相数,半波、全波、半控、全控等类型,通过调节触发装置GT的控制电压Uc来移动触发脉冲的相位,以改变整流电压Ud,从而实现平滑调速。由于V-M系统具有调速范围大、精度高、动态性能好、效率高、易控制等优点,且已比较成熟,因此已在世界各主要工业国得到普遍应用。 -图2-1 晶闸管-电动机直流调速系统(V-M系统)但是,晶闸管整流器还存在以下问题:(1) 由于晶闸管的单向导电性,给系统的可逆运行造成困难; (2) 由于晶闸管元件的过载能力小,不仅要限制过电流和反向过电压,而且还要限制电压变化率(du/dt)和电流变化率(di/dt),因此必须有可靠的保护装置和符合要求的散热条件;(3) 当系统处于深调速状态,即在较低速下运行时,晶闸管的导通角小,使得系统的功率因数很低,并产生较大的谐波电流,引起电网电压波形畸变,对电网产生不利影响;(4) 由于整流电路的脉波数比直流电动机每对极下的换向片数要小得多,因此,V-M系统的电流脉动很严重。2.2 单闭环调速系统简介2.2.1 系统的组成已知,开环系统不能满足较高的调速要求。许多需要无级调速的生产机械,常常不允许有很大的静差率。为了使系统同时满足D、S的要求,提高调速质量,必须采用闭环系统。用转速检测装置,例如在电动机上安装一台测速发电机TG,检测出输出量或被调量n的大小和极性,并把它变换成与转速成正比的负反馈电压Ufn,与转速给定电压Un相比较后,得到偏差电压Un,经放大产生触发装置GT的控制电压Uc,用以控制电动机的转速。这就组成了转速负反馈单闭环调速系统,其原理图如图2-2。根据自动控制原理,反馈闭环控制系统是按被调量的偏差进行控制的系统。只要被调量出现偏差,它就会产生纠正偏差的自动调节过程。而前述转速降落正是由负载引起的转速偏差,因此闭环调速系统应该能大大减小转速降落。图2-2 单闭环调速系统2.2.2 系统的工作原理改变转速给定电压Un的大小,就可以改变直流电动机的转速,实现平滑调速。如图2-3所示,设电动机在Ud1决定的特性上的点1处以转速n1稳定运行,这时负载电流Id=Id1,控制电压Uc=Uc1,整流平均电压Ud=Ud1,当电动机上的负载转矩TL加大时有如下自动调节过程。整流电压平均值的增量Ud=Ud2-Ud1,用于补偿电阻压降增量IdR=(Id2-Id1)R中的很大部分,使转速最后稳定在Ud2决定的特性上的2处,显然n2略小于n1。 图2-3 闭环系统静特性与开环机械特性的关系上述自动调节作用表明,增加或减小负载,就相应地提高或降低整流电压,因而得到一条新的开环机械特性。按上述工作原理在每条开环机械特性上取一个相应的工作点,再将这些点集合起来 ,就是闭环系统的静特性,也就是说,闭环调速系统的静特性实际上是由许多机械特性上的不同运行点集合而成,可视为一条综合的特性直线,它代表闭环调节作用的结果。2.2.3 单闭环调速系统的基本性质转速单闭环调速系统是一种基本的反馈控制系统,具有以下具体特征,也就是反馈控制的基本规律:(1) 应用比例调节器的单闭环系统是有静差的;(2) 单闭环系统对于给定输入绝对服从;(3) 单闭环系统具有较强的抗扰性能。2.3 双闭环调速系统简介2.3.1 双闭环调速系统的构成单闭环调速系统可以实现转速调节无静差,且采用电流截止负反馈作限流保护可以限制启(制)动时的最大电流。单闭环调速系统还存在以下问题:(1) 在单闭环调速系统中用一个调节器综合多种信号,各参数间相互影响,难于进行调节器动态参数的调整,系统的动态性能不够好。在采用电流截止负反馈和转速负反馈的单闭环调速系统中,一个调节器需完成两种调节任务:正常负载时实现速度调节,过载时进行电流调节。一般而言,在这种情况下,调节器的动态参数无法保证两种调节过程同时具有良好的动态品质。(2) 系统中采用电流截止负反馈环节来限制启动电流,不能充分利用电动机的过载能力获得最快的动态响应,即最佳过度过程。为了获得近似的理想的过度过程,并克服几个信号综合于一个调节器输入端的缺点,最好的办法就是将主要的被调量转速与辅助被调量分开加以控制,用两个调节器分别调节转速和电流,构成转速电流双闭环调速系统。1直流双闭环调速系统的组成 在转速、电流双闭环调速系统中,即要控制转速,实现转速无静差调节,又要控制电流使系统在充分利用电动机过载能力的条件下获得最佳过度过程,其关键是处理好转速控制和电流控制之间的关系,就是将两者分开,用转速调节器ASR调节转速,用电流调节器ACR调节电流。ASR与ACR之间实现串级调节,即以ASR的输出电压Ui作为电流调节器的电流给定信号,再用ACR的输出电压Uc作为晶闸管触发电路的移相控制电压。从闭环反馈的结构看,速度环在外面为外环,电流环在里面为内环。为了获得良好的静、动态性能,转速和电流两个调节器一般都采用具有输入、输出限幅电路的PI调节器,且转速和电流都采用负反馈环。系统原理图如图2-4。图2-4 直流双闭环调速系统电路原理图2调节器输出限幅值的整定在双闭环系统中转速调节器ASR的输出电压Ui是电流调节器ACR的电流给定信号,其限幅值Uim为最大电流给定值,因此,ASR的限幅值完全取决于电动机所允许的过载能力和系统对最大加速度的需要。而ACR的输出电压限幅值Ucm,表示对最小角的限制,也表示对晶闸管整流输出电压的限制。调节器输出限幅值的计算与整定是系统设计和调试工作中很重要的一环。3调节器锁零为使调速系统消除静差,并改善系统的动态品质,在系统中引入PI调节器作为矫正环节。由于PI调节器的积分作用,在调速系统停车期间,调节器会因输入干扰信号的作用呈现出较大的输出信号,而使电动机爬行,这在控制上是不允许的,因此对调速系统中具有积分作用的调节器,在没有给出电动机启动指令之前,必须将它的输出“锁”到零电位上,简称为调节器锁零。系统中调节器锁零是由零速锁零电路来实现的。并且系统对调节器锁零电路有如下具体要求:(1) 系统处于停车状态时,调节器必须锁零;(2) 系统接到启动指令或正常运行时,调节器锁零立即解除并正常工作。根据上述要求,锁零电路只需两个信号来控制调节器“锁零”与“开放”两个状态。停车时:Un=Ufn=0, 调节器锁零,无输出信号。启动时:Un0,Ufn=0,调节器锁零解除,并处于正常工作状态。稳态运行时:Un=Ufn0,调节器锁零解除,并处于正常工作状态。制动停车时:Un=0, Ufn0,调节器锁零解除,并处于正常工作状态。必须注意,对于可逆调速系统,Un=0, Ufn0时,调节器不能锁零,以保证调节器对其进行制动停车控制。为使锁零电路对不可逆和可逆系统都具有通用性,Un=0, Ufn0时,要求调节器不能锁零。调节器锁零可以采用场效应管来实现,如图2-5所示。图2-5 调节器锁零当Un=Ufn=0时,锁零调节电路使场效应管导通,从而使调节器锁零。2.3.2 双闭环调速系统的稳态结构及其静态特性1. 双闭环调速系统的稳态结构图根据图2-4所示的原理图可以很方便的画出图2-6所示双闭环调速系统的稳态结构图。其中的转速、电流调节器ASR、ACR这两个环节的输入与输出稳态关系无法用放大系数表示,而用带限幅输出的PI调节器的输出特性表示。图2-6 双闭环调速系统的稳态结构图为转速反馈系数;为电流反馈系数2. 双闭环调速系统的静特性双闭环调速系统的静特性仍然表示系统转速n与电流Id或转矩Te的稳态关系,即系统达稳态时n=f(Id)或n=f(Te)。分析其静态性能的关键是掌握限幅输出的PI调节器的稳态特征。一般有两种状态:饱和输出达限幅值;不饱和输出未达限幅值。当调节器饱和时,输出为恒值,且不在受输入量变化的影响,除非有反向的输入量使调节器退出饱和;当调节器不饱和时,其比例积分控制作用总是使稳态输入偏差电压U为零。实际上,系统正常运行时,电流调节器不会达到预先设计好的饱和状态,因此,对于静特性来说,只需考虑转速调节器的饱和和不饱和两种情况。(1)转速调节器不饱和这时,两个调节器都不饱和,稳态时,它们的输入偏差都为零。因此,由ASR的输入偏差电压Un=0得 (2-1) (2-2) 由ACR的输入偏差电压Ui=0得 (2-3) 从而可画出图2-7所示静特性的n0A段。由于ASR不饱和,因此UiUim,由式(2.3)知IdId,这正是静特性的运行段。(2)转速调节器饱和当转速调节器ASR饱和时,ASR输出达限幅值Uim,转速环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成一个电流无静差单闭环系统。稳态时 (2-4)式中,最大电流Idm是由设计者选定的,取决与电动机所允许的最大过载能力和拖动系统允许的最大加速度。式(2-.4)所描述的静特性如图2-7中的AB段。这样的下垂特性只适合于nn0的情况。若nn0,UfnUn,ASR将退出饱和状态。由以上分析可知,双闭环调速系统的静特性在负载电流小于Idm时表现为转速无静差;当负载电流达到Idm后表现为电流无静差,使系统获得过电流自动保护。这就是采用两个PI调节器分别形成内、外两个闭环的效果。显然,双闭环调速系统的静特性要比带电流截止负反馈的单闭环调速系统的静特性好。但是,实际上,由于运算放大器的开环放大系数并不是无穷大,特别是为避免零点漂移而采用准PI调节器(即在PI调节器反馈电阻电容电路的两端并接一个阻值为若干M的电阻)时,静特性的两段都略有很小的静差,如图2-7中虚线所示。图2-7 双闭环调速系统的静特性图3 双闭环调速系统的稳态工作点及其稳态参数的计算由于转速、电流调节器均采用PI调节器,可实现转速和电流调节无静差,因此,当系统达稳态,且两个调节器都不饱和时,由图2-7可得各变量之间的稳态关系如下 (2-5) (2-6) (2-7)上述关系表明,在稳态工作点上,转速n由给定电压Un决定,ASR的输出Ui由负载电流IL决定,而控制电压Uc的大小同时由n和Id决定,也就是由Un和IL决定。这些关系反映了PI调节器与P调节器的不同之处在于:P调节器的输出量正比与输入量,而PI调节器的输出量的稳态值时间常数。2.3.3 双闭环调速系统的动态特性与输入无关系,完全由它后面环节的需要决定。鉴于此,双闭环调速系统的稳态参数计算方法完全不同于单闭环有静差系统。稳态时,虽然ASR、ACR的输入偏差电压都为零,但是二者的积分作用使它们都有恒定的输出电压。这时,转速反馈系数为 (2-8) 电流反馈系数 (2-9) 其中两个给定电压的最大值Unm和Uim由运算放大器允许的最大输入电压决定。2.3.4 双闭环调速系统的动态分析1. 双闭环调速系统的动态数学模型912根据双闭环调速系统的原理图2-4,可画出双闭环调速系统的动态结构图如图2-8所示。图2-8 双闭环调速系统的动态结构图(1) 双闭环调速系统突加给定时的启动过程设置双闭环控制的一个重要目的是要获得接近于理想启动过程,因此有必要首先讨论双闭环调速系统突加给定时的启动过程。由于在启动过程中,转速调节器ASR经历了不饱和、饱和、退饱和三个阶段,因此整个启动过程分为三个阶段,分别标以、。 第阶段:电流上升阶段突加给定电压Un后,通过两个调节器的控制作用,Uc、Ud、UL都迅速上升,当IdIL后,转速n从零开始增长,但由于电动机机电惯性较大,转速n及其反馈信号Ufn增长较慢,转速调节器ASR因输入偏差电压Un=Un-Ufn数值较大而迅速饱和,并输出最大电流给定值Uim,强迫Id电流迅速上升。当Id=Idm时,UfiUim,电流调节器ACR的作用使Id不再增长,第阶段结束1,9。在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般不饱和,以确保电流环的调节作用,这些都是在系统设计时必须考虑和给予保证的。 第阶段: 恒流升速阶段,即电动机保持最大电流作等加速启动的阶段。该阶段从电流上升到Idm开始,直至转速升至给定值n1为止,是启动过程的主要阶段。在这个阶段中,ASR一直处于饱和状态(因Un未改变极性),转速环相当于开环,其作用是输出最大电流给定值Uim,系统表现为在恒值电流给定Uim作用下的电流调节系统,基本上保持电流Id恒定(电流可能超调,也可能不超调,取决与ACR的结构和参数),因而系统的加速度恒定,转速及反电势线性上升。在电流环实现恒流调节的过程中,反电势E是一个线性渐增的扰动量。为了克服这个扰动量,Uc 和Ud也必须基本上线性增长,才能保持Id恒定。电流环对扰动E的恒流调节过程如下:nEIdUfi|Ui|UcUdId转速n不断上升,ACR便不断重复上述恒流调节过程,以维持电流Id恒定,保证转速线性上升。由于ACR是PI调节器,因此要使它的输出量线性增长,就必须使其输入量偏差电压Ui保持为某一恒值,也就是说,Id应略低于Idm。上述情况表明,恒流调节过程一直伴随着对反电势扰动的调节过程,反电势扰动对电流的影响为ACR的积分作用所补偿,为了保证电流环的这种恒流调节作用,在启动过程中,ACR不能饱和。这就要求ACR的积分时间常数和被控对象的时间常数T1要相互配合。同时,晶闸管整流装置的最大电压Udm必须留有余地,即晶闸管装置也不应饱和。这些都是在系统设计应予以考虑和解决的问题。 第阶段:转速超调进入稳定的阶段,即转速调节阶段。在该阶段开始时,即t2时刻,转速已达给定值n1,ASR的给定电压Un与反馈电压Ufn相等,其输入偏差为零,但其输出却由于积分作用还维持在限幅值Uim上,因此电动机仍在最大电流下继续加速,使转速超调。转速超调以后,nn1,UfnUn,ASR的输入偏差Un由正变负,ASR退出饱和状态,其输出电压Ui立即从限幅值Uim降下来,Id随之迅速减小。但是,在IdIL的一段时间内时间内,dn/dt0,电动机在负载阻力下减速,直至系统达稳态。该阶段的特点是ASR、ACR都不饱和,同时起调节作用。但是ASR处于主导地位,它使转速迅速趋于给定值,并使系统稳定;而ACR的作用是使Id尽快的跟随ASR的输出Ui变化,也就是说,电流内环的调节过程是由转速外环支配的,是一个电流随动子系统。(2) 双闭环调速系统的抗扰性能负载扰动和电网电压扰动是双闭环调速系统中的两个主扰动,只要系统能有效的抑制它们所引起的动态转速降(升)和恢复时间,就说明系统具有较强的动态抗扰能力。 抗负载扰动 由图2-8所示的动态结构图可以看出,负载扰动作用在电流环外,转速环内,只能靠转速调节器产生抗扰作用。因此,在突加(减)负载时,必然会引起动态转速降(升)。为了减小动态转速降(升),在设计ASR时,必须要求系统具有较好的抗扰性能。而对ACR的设计来说,则只要电流环具有良好的跟随性能就可以了。 抗电网电压扰动 从静特性上看,在双闭环调速系统中,电网电压扰动被包围在电流环内(如图2-9)它的影响还未波及到转速就被电流环所抑制。因此,在双闭环调速系统中,电网电压波动引起的动态速降(升)要比单闭环系统小得多。图2-9 双闭环调速系统的动态抗扰性能第3章 矿井提升机直流双闭环调速系统方案确定在矿井提升机直流双闭环调速系统的设计中,电动机、晶闸管触发和整流装置都可按负载的工艺要求来选择和设计,转速和电流反馈系统可以通过稳态参数计算得到。最后剩下的是转速和电流调节器的结构和参数如何确定。其确定的方法有两种:一种是动态校正法,由于该法必须同时解决稳、准、快、抗干扰等各方面相互有矛盾的静、动态性能要求,比较麻烦;因而本设计采用另一种方法,工程设计法。直流调速系统动态参数的工程设计,包括对某些简单的典型低阶系统进行深入研究,找出适合与给定性能指标的控制规律;确定系统预期的开环传递函数和开环频率特性的形式;选择调节器结构,计算调节器参数。这样将使系统的工程设计过程简便、明确且具有一定的准确性。工程上通常选用以下两种预期典型系统,其开环传递函数分别为:二阶典型系统(典系统)三阶典型系统(典系统)在选择时,一般来说,典型系统的跟随性能超调小,但抗扰性能稍差,而典型系统的超调量相对较大,抗扰性能却比较好。这是设计时选择典型系统的重要依据。3.1 总体方案矿井提升机直流双闭环调速系统属于多环控制系统。目前都采用由内向外,一环包围一环的系统结构。每一闭环都设有本环的调节器,构成一个完整的闭环系统。在设计时,先从内环(电流环)开始,根据电流控制要求,确定把电流环校正为哪种典型系统,按照调节对象选择调节器及其参数。设计完电流环后,就把电流环等效成一个小惯性环节,作为转速环的一个组成部分,然后用同样的方法进行转速环的设计。每个环的设计都是把该环校正成典型系统,以便获得预期的性能指标。通常,随动系统的动态指标以跟随性能为主,而调速系统的动态指标以抗扰性能为主。3.2 电流环设计方案3.2.1 电流调节器的工作原理电流调节器也有两个输入信号。一个是速度调节器输出反映偏差大小的主控信号Un,一个是由交流互感器测出的反映主回路电流反馈信号Uif,当突加速度给定一个很大的输入值,其输出整定在最大饱和值上,与此同时电枢电流为最大值,从而电动机在加速过程中始终保持在最大转矩和最大加速度,使起、制动过渡时间最短。如果电网电压发生突变(如降低)时,整流器输出电压也会随之变化(降低),引起主回路电流变化(减小),由于快速性好,不经过电动机机械环节的电流反馈环的作用,立即使调节器的输出变化(增大),则也变化(变小),最后使整流器输出电压又恢复(增加)致电原来的数值,这就抑制了上回路电流的变化。也就是说,在电网电压变化时,在电动机转速变化之前,电流的变化首先被抑制了。同样,如果机械负载或电枢电流突然发生很大的变化,由于采用了频率响应较好的快速电流负反馈,当整流器直流侧发生类似短路的严重故障时,电流负反馈也及时地把电流故障反馈到电流控制回路中去,以便迅速减小输出电压,从而保护晶闸管和直流电动机不致因电流过大而损坏。3.2.2 电流调节器的作用 作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随其给定电压变化; 对电网电压波动起及时抗扰作用; 在转速动态过程中,保证获得电动机允许的最大电流,从而加快动态过程; 当电动机过载甚至堵转时,限制电枢电流的最大值,起到快速的自动保护作用,一旦故障消失,系统能自动恢复正常。 电流环的控制对象由电枢回路形成的大惯性环节和晶闸管变流装置,电流检测及其反馈滤波等小惯性群组成,可以根据具体系统的要求,将电流环校正成典系统或典系统。若以电枢电流超调小,跟随性能好为主,则可校正成典系统;若以具有较好的抗绕性能为主,则应校正成典系统。3.3 转速环设计方案3.3.1 转速调节器的工作原理在主电机上安装一直流测速发电机,发出正比于主电机转速的电压,此电压Unf与给定电压Un*相比较,其偏差Un送到速度调节器ASR中去,如欲调整,可以改变给定电压,例如提高Un*,则有较大Un加到ASR输入端,ASR自动调节GT,使触发脉冲前移(减小),整流电压Ud提高,电动机转速上升,与此同时,Um也相应增加。当等于或接近给定值时,系统达到平衡,电动机在给定数值下以较高的转速稳定转动。如果电动机负载或交流电压发生变化或其它扰动,则经过速度反馈后,系统能起到自动调节和稳定作用,当电机负载增加时转速下降,平衡状态被破坏,调节器输出电压增加,触发脉冲前移(变小),Ud提高,电动机转速上升。当其恢复到原来数值时,Unf又等于给定电压,系统又达到平衡状态。如果扰动不是来自负载而是来自交流电网,比如交流电压下降,则系统也会按上述过程进行调节,使电动机转速维持在给定值上运行。同样道理,当电动机负载下降,或交流电压提高时,系统将按与上相反调节,最后能维持电动机近似转速不变。 3.3.2 转速调节器的作用 转速调节器是调速系统的主导调节器,它使转速n跟随其给定电压变化,稳定时可减小转速误差,如果采用PI调节器,则可实现无静差; 对负载变化起抗扰作用; 其输出限幅值决定允许的最大电流。电流环是系统的内环,被包围在转速环内,在设计转速调节器时,可把已设计好的电流环看作是转速调节系统中的一个环节。根据系统的要求,将转速环校正为合适的典型系统,再由调速系统的动态性能指标和采用的参数选择准则对其主要参数选择。并以此为基础对系统超调量进行计算,看是否符合设计需要。第4章 提升机双闭环直流调速系统调节器设计矿井提升机直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度;第二选择调节器的参数,以满足动态性能指标。为了方便设计,我们就设某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:220V, 136A, 1460r/min, Ce=0.132Vmin/r,允许过载倍数;晶闸管装置放大系数: ks=40;电枢回路总电阻: R=0.5;时间常数: Tl=0.03s, Tm=0.18s;电流反馈系数: 。4.1 电流调节器4.1.1 电流调节器结构的选择电流环的传递函数可以写成:电流环以跟随性能为主,即选用典型I系统。图4-1 电流环等效近似处理后校正成为典型I系统框图ACR选用PI型电流调节器,传函如下: -电流调节器的比例系数; -电流调节器的超前时间常数。4.1.2 电流调节器设计设计要求:电流超调量1确定时间常数 整流装置滞后时间常数 电流滤波时间常数 电流环小时间常数之 2选择电流调节器结构 根据设计要求,并保证稳
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《民事诉讼法》2022-2023学年第一学期期末试卷
- 淮阴师范学院《行政法与行政诉讼法(1)》2022-2023学年第一学期期末试卷
- 淮阴工学院《数学建模》2022-2023学年第一学期期末试卷
- 淮阴师范学院《操作系统》2021-2022学年期末试卷
- DB4117-T+415-2024兽药口服溶液剂生产技术要求
- 产品经理工作总结15篇
- 扣押的范围-程序及对扣押证据的处置
- 工程设计中的数据处理考核试卷
- 畜禽饲料营养配方优化考核试卷
- 医用防护面罩的制造工艺与质量验证准则考核试卷
- 水幕系统设备维护方案
- 双塔精馏正常操作双塔精馏正常操作
- 肝性脑病的护理个案课件
- 设备采购 投标方案(技术方案)
- 振荡指标MACD(波段操作精解)
- 2024年四川航空股份有限公司招聘笔试参考题库含答案解析
- 2021中国静脉血栓栓塞症防治抗凝药物的选用与药学监护指南(2021版)解读
- 医学检验专业职业规划书
- 喘证诊疗方案临床疗效评价总结分析
- 品牌授权工厂生产授权书合同
- 读后续写个人成长类+My+mother's+gift+讲义 高考英语作文复习专项
评论
0/150
提交评论