




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
热管烟气余热回收装置-热管换热器在烟气脱硫系统中的应用简介蒸汽消声器|蒸汽排放消声器|蒸汽放空消声器|小孔型消声器|小孔式消声器|安全阀消声器|安全门消声器|烟气消声器|烟道消声器|风机消声器 鼓风机消声器|引风机消声器|罗茨风机消声器|锅炉点火消声器热管余热回收装置的性能特点1、安装方便:余热回收装置的安装不需要对原锅炉或工业窑炉进行改动。2、安全可靠:超导热管等温性能好,导热时产生自振不产生圬垢和通风阻力,始终保持良好的传热效率,不影响锅炉或窑炉的工作。3、使用寿命长:超导热管余热回收装置使用寿命10年以上,单根热管可拆卸更换,维护简单成本低。4、节能效益好:大型工业窑炉效率可提高5-8,节能达6-10。中小型燃油、燃气、燃煤锅炉效率可提高3-8,节能达4-10。超导热管是余热回收装置的主要热传导元件,与普通的热交换器有着本质的不同。热管余热回收装置的换热效率可达98以上,这是任何一种普通热交换器无法达到的。热管余热回收装置体积小,只是普通热交换器的1/3。其工作原理如图所示:左边为烟气通道,右边为清洁空气(水或其它介质)通道,中间有隔板分开互不干扰。高温烟气由左边通道排放,排放时高温烟气冲刷热管,当烟气温度30时,热管被激活便自动将热量传导至右边,这时热管左边吸热,高温烟气流经热管后温度下降,热量被热管吸收并传导至右边。常温清洁空气(水或其它介质)在鼓风机作用下,沿右边通道反方向流动冲刷热管,这时热管右边放热,将清洁空气(水或其它介质)加热,空气流经热管后温度升高。由若干根热管组成的余热回收装置,安装在锅炉或窑炉烟口,将烟气中热量吸收并高速传导至另一端,使排烟温度降至接近露点而减少热量排放损失。加热后的清洁空气可烘干物料或补充到锅炉、窑炉内循环使用。提高锅炉和工业窑炉的热效率,降低燃料消耗,达到节能的目的。公司全称:连云港正航消声器公司地 址:连云港市海州区新坝新北路工业园电 话85370962手 机:(0真系人:谢其志总经理网 址:热管换热器在烟气脱硫系统中的应用简介1. 概述在众多的传热元件中,热管是人们所知的最有效的传热元件之一,它可将大量的热量通过其很小的截面积远距离地传输而无需外加动力。国际上对热管技术的研究和应用在20世纪60年代开始。我国在这方面的研究起始于上世纪70 年代,开展了热管的传热性能研究和热管在电子器件冷却和空间飞行器方面的应用研究。80年代初,我国的热管研究和开发重点转向节能和能源的合理利用,相继开发了热管气气换热器、热管余热锅炉、高温热管蒸汽发生器、高温热管热风炉等各类热管产品。由于碳钢水重力热管的结构简单、价格低廉、制造方便、易于在工业中推广应用,使得热管技术工业化应用的开发与研究得到了迅速的发展。随着科学技术的不断提高,热管研究和应用的领域也在不断拓宽。目前,热管及热管换热器作为高效传热传质设备已广泛应用于石油、化工、动力、冶金、建材、轻工等领域,以及电子装置芯片冷却、笔记本电脑CPU冷却及电路控制板等的冷却。目前,除微型热管已批量化、大规模生产外,无论是工业过程中的热管换热设备还是余热回收用的热管换热器,由于各种设备规模、大小、使用情况的不同,每台设备均可以根据现有的工艺条件、现场情况进行设计、制造。2. 热管工作原理及热管换热器特点2.1 重力热管工作原理整体式热管换热器是一种利用高温流体的热量加热低温流体的换热设备。换热器中的热管一般由管壳和内部工作液体 (工质)组成。管壳采用钢制的并且是抽成真空的密闭管壳,工质是经过特殊处理的液体,如下图所示。热管受热侧吸收高温流体热量,热量通过热管壁传给管内工质,工质吸热后沸腾和蒸发,转变为蒸汽,蒸汽在压差的作用下上升至放热侧,受管外低温流体的冷却,蒸汽冷凝并向外放出凝结潜热,低温流体获得热量,冷凝液依靠重力回到受热侧。如此周而复始,高温流体热量便传给低温流体,使低温流体得到加热。由于热管内部一般抽成一定的真空,工质极易沸腾与蒸发,热管启动非常迅速,因此其具有很高的导热能力。与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。2.2 热管换热器的特点与常规换热设备相比,热管技术具有如下的重要特点:(1)热管换热设备较常规换热设备更安全、可靠,可长期连续运行。常规换热设备一般都是间壁换热,冷、热流体分别在器壁的两侧流过,如管壁或器壁有泄漏,则将造成停产损失。由热管组成的换热设备,是二次间壁换热,即热流体要通过热管的蒸发段和冷凝段管壁才能传到冷流体,而热管一般不可能在蒸发段和冷凝段同时破坏,所以大大增强了设备运行的可靠性;(2)传热效率高,热管的冷、热侧均可根据需要采用缠绕翅片来增加传热面积;(3)有效地避免冷、热流体的串流,每根热管都是相对独立的密闭单元,冷、热流体均在管外流动,并由中间密封结构将冷、热流体完全隔开;(4)有效的防止露点腐蚀,通过调整热管根数或调整热管冷热侧的传热面积比,使热管壁温提高到露点温度以上;(5)有效的防止积灰,换热器设计时能够采用变截面形式,保证流体通过热管换热器时等流速流动,达到自清灰的目的; 本文来自 (6)无任何转动部件,没有附加动力消耗,不需要经常更换元件,即使有部分元件损坏,也不影响正常生产;(7)单根热管的损坏不影响其它的热管,同时对整体换热效果的影响也可忽略不记。3. 在烟气脱硫系统中的应用3.1 整体式热管GGH国内外目前普遍采用的脱硫方法为湿式石灰石石膏法烟气脱硫技术,90%以上的国内外火电厂脱硫技术均采用此种方法,在该工艺中,选择既经济又高效可靠的烟气换热装置是脱硫工艺中的关键环节,利用未脱硫的高温烟气通过换热器去加热脱硫后的净烟气,使净烟气从40被加热到提升烟气的抬升高度。利用脱硫换热器既可以回收高温烟气的热量、节省能源,又可以保证脱硫塔的正常工作、减少水消耗,同时提高脱硫塔的脱硫效率、降低对大气的二次污染。该换热器有一个矩形的外壳,内部由许多单根热管组成,热管的布置形式可以是错列呈三角形的排列,也可以是顺列呈正方形的排列。在矩形壳体内部的中央有一块管板(中孔板)把壳体分成两部分,形成高温流体(原烟气)和低温流体(净烟气)的通道。当高、低温流体同时在各自的通道中流过时,热管就将高温流体(原烟气)的热量传给低温流体(净烟气),实现了两种流体的热交换,使原烟气的温度降低达到去吸收塔的温度,净烟气的温度升高满足排放的要求。在换热器中,热管数量的多少取决于换热量的大小,为提高换热系数,在热管上缠绕翅片,这样可使所需的热管数目大大减少。因此,采用热管式GGH换热装置具有较强的经济意义和社会意义。3.1.1 结构形式特点(1) 中间管板的密封热管式GGH中中孔板是分隔原烟气与净烟气的隔板,不使原烟气与净烟气串流, 其密封性要求较高。设计时采用密封圈和锥面线密封对原烟气与净烟气加以双重密封,确保密封的可靠性。为了确保热管在运行中热膨胀及振动引起的密封破坏,保证中孔板的严格密封,在每根热管的顶部(或底部)用弹簧对热管进行压紧(或拉紧),确保万无一失。(2)热管的热膨胀热管式GGH中每根热管只有一个固定点,该固定点在中孔板处,其两端均可自由膨胀,因此热管的膨胀不会对换热器产生危害。3.1.2 合理的管排布置与灵活的清灰方式考虑到整个脱硫系统中烟气的含尘量较高,在设备中,为提高传热效率,热管仍采用错排形式,但管外缠绕的翅片采用了大螺距、低翅高形式。为考虑清灰,设备内按一定间距布置了若干组吹灰管束,并且配备激波或声波吹灰器接口。同时,在换热器的冷、热流体通道中每隔4-6排管排就留出人行通道,必要时可采取人工进入彻底清灰,也利于设备的内部维护。 设备底部和中部均留有排污口和排液口,方便清灰处理和及时排污。3.1.3 选择合适的烟气流速选择合适的烟气流动速度,达到自清灰性能。一般说来,能使热管具有自清灰性能的风速范围是8-12 m/s,热管式GGH中,在满足烟气阻力降的要求下,烟气流速控制在9-10 m/s之间,说明该设备在正常运行时,能达到自清灰的作用。 3.1.4 防腐处理在烟气脱硫技术中,除干法外,其它脱硫方法均要解决装置的腐蚀与防护问题。在热管式GGH中同样也存在腐蚀问题,可以采取以下措施:(1)合理控制热管壁温根据热管的特点,通过调整冷、热侧的传热面积比,使热管工作在“允许腐蚀区域”。根据国内外的试验证明腐蚀速度并不是简单地随着温度的降低而增加,而是如图2所示的关系。从图中可以看出,在酸露点的腐蚀程度并不高,最高腐蚀点出现在接近酸露点处;然后随着温度的继续降低,腐蚀程度也迅速下降,直至最低腐蚀点;再继续降低温度,腐蚀程度又会增加。这说明,在酸露点以下存在着一个腐蚀速度很小的区域“允许腐蚀区域”。如果受热面工作在这个区域内,就可以把腐蚀降低到最小。这样可以通过调整热管冷热侧的传热面积比,使热管工作在“允许腐蚀区域”。(待续)1、翅片管换热器的知识可以参考哈尔滨工业大学刘纪福教授的系列讲座内容。- Q3 P6 x9 A. u- : d E0 0 J5 ; y5 R& A2、列管式换热器的选用与设计原则如下:$ 2 h5 P k+ B 换热器的设计即是通过传热过程计算确定经济合理的传热面积以及换热器的结构尺寸,以完成生产工艺中所要求的传热任务。换热器的选用也是根据生产任务,计算所需的传热面积,选择合适的换热器。由于参与换热流体特性的不同,换热设备结构特点的差异,因此为了适应生产工艺的实际需要,设计或选用换热器时需要考虑多方面的因素,进行一系列的选择,并通过比较才能设计或选用出经济上合理和技术上可行的换热器。5 M3 + d! X9 Q本节将以列管式换热器为例,说明换热器选用或设计时需要考虑的问题。) , B+ M+ C3 ?& ; L& & 一、 流体通道的选择2 IE# n( Uw9 I% a流体通道的选择可参考以下原则进行:% q5 y j- 9 h d% K1 不洁净和易结垢的流体宜走管程,以便于清洗管子;5 eE! j! z; f: 8 K! f% W2 腐蚀性流体宜走管程,以免管束和壳体同时受腐蚀,而且管内也便于检修和清洗; o0 H% P, I( z% t) O3 高压流体宜走管程,以免壳体受压,并且可节省壳体金属的消耗量;! & b% k# m- |6 J n4 饱和蒸汽宜走壳程,以便于及时排出冷凝液,且蒸汽较洁净,不易污染壳程;5 V+ B3 F% T% d+ J% W5 被冷却的流体宜走壳程,可利用壳体散热,增强冷却效果;6 2 C% j5 c& d3 K: X6 Z E6 有毒流体宜走管程,以减少流体泄漏;: / a! t6 ) m! M( U: ?1 R, 7 粘度较大或流量较小的流体宜走壳程,因流体在有折流板的壳程流动时,由于流体流向和流速不断改变,在很低的雷诺数(Re100)下即可达到湍流,可提高对流传热系数。但是有时在动力设备允许的条件下,将上述流体通入多管程中也可得到较高的对流传热系数。# a: Lg1 p, c; O* W0 d 在选择流体通道时,以上各点常常不能兼顾,在实际选择时应抓住主要矛盾。如首先要考虑流体的压力、腐蚀性和清洗等要求,然后再校核对流传热系数和阻力系数等,以便作出合理的选择。) S6 o0 b3 | s7 p( L+ P二、 流体流速的选择2 o. A5 P( i2 U* X. H1 q, k& w5 换热器中流体流速的增加,可使对流传热系数增加,有利于减少污垢在管子表面沉积的可能性,即降低污垢热阻,使总传热系数增大。然而流速的增加又使流体流动阻力增大,动力消耗增大。因此,适宜的流体流速需通过技术经济核算来确定。充分利用系统动力设备的允许压降来提高流速是换热器设计的一个重要原则。在选择流体流速时,除了经济核算以外,还应考虑换热器结构上的要求。9 DR! & K1 , 6 X 表5-4给出工业上的常用流速范围。除此之外,还可按照液体的粘度选择流速,按材料选择容许流速以及按照液体的易燃、易爆程度选择安全允许流速。9 v5 E5 4 A( E* wr三、 流体两端温度的确定6 E& U T: q- H 若换热器中冷、热流体的温度都由工艺条件所规定,则不存在确定流体两端温度的问题。若其中一流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却一热流体,冷水的进口温度可根据当地的气温条件作出估计,而其出口温度则可根据经济核算来确定:为了节省冷水量,可使出口温度提高一些,但是传热面积就需要增加;为了减小传热面积,则需要增加冷水量。两者是相互矛盾的。一般来说,水源丰富的地区选用较小的温差,缺水地区选用较大的温差。不过,工业冷却用水的出口温度一般不宜高于45,因为工业用水中所含的部分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)的溶解度随温度升高而减小,如出口温度过高,盐类析出,将形成传热性能很差的污垢,而使传热过程恶化。如果是用加热介质加热冷流体,可按同样的原则选择加热介质的出口温度。 ( |! X* M+ D6 L3 B四、 管径、管子排列方式和壳体直径的确定1 s2 ZL$ P% & V* c 小直径管子能使单位体积的传热面积大,因而在同样体积内可布置更多的传热面。或者说,当传热面积一定时,采用小管径可使管子长度缩短,增强传热,易于清洗。但是减小管径将使流动阻力增加,容易积垢。对于不清洁、易结垢或粘度较大的流体,宜采用较大的管径。因此,管径的选择要视所用材料和操作条件而定,总的趋向是采用小直径管子。+ A, A/ $ ?3 k n5 q5 P+ A8 Y 管长的选择是以合理使用管材和清洗方便为原则。国产管材的长度一般为6m,因此管壳式换热器系列标准中换热管的长度分为1.5、2、3或6m几种,常用3m或6m的规格。长管不易清洗,且易弯曲。此外,管长L与壳体D的比例应适当,一般L/D=46。6 C 7 q/ e4 o 管子的排列方式有等边三角形、正方形直列和正方形错列三种。等边三角形排列比较紧凑,管外流体湍动程度高,对流传热系数大;正方形直列比较松散,对流传热系数较三角形排列时低,但管外壁清洗方便,适用于壳程流体易结垢的场合;正方形错列则介于上述两者之间,对流传热系数较直列高。9 r9 j$ D# L7 y# 1 6 a 管子在管板上的间距t跟管子与管板的连接方式有关:胀管法一般取t=(1.31.5)do,且相邻两管外壁的间距不小于6mm;焊接法取t=1.25do。. k5 R; F7 t+ P* s2 换热器壳体内径应等于或稍大于管板的直径。通常是根据管径、管数、管间距及管子的排列方式用作图法确定。! * / R8 / ! | 4 3 U五、 管程和壳程数的确定6 G, E! P5 P9 M5 G+ B 当流体的流量较小而所需的传热面积较大时,需要管数很多,这可能会使流速降低,对流传热系数减小。为了提高流速,可采用多管程。但是管程数过多将导致流动阻力增大,平均温差下降,同时由于隔板占据一定面积,使管板上可利用的面积减少。设计时应综合考虑。采用多管程时,一般应使各程管数大致相同。) C4 B% e% j* t$ p E h 当列管式换热器的温差修正系数 时,可采用多壳程,如壳体内安装与管束平行的隔板。但由于在壳体内纵向隔板的制造、安装和检修都比较困难,故一般将壳体分为两个或多个,将所需总管数分装在直径相等而较小的壳体中,然后将这些换热器串联使用,如图5-23所示。+ 3 T T! y* G; l六、 折流板9 t) W0 2 t6 i) V( m+ 折流板又称折流挡板,安装折流板的目的是为了提高壳程流体的对流传热系数。其常用型式有弓形折流板、圆盘形折流板(如图5-24所示)以及螺旋折流板等。常用型式为弓形折流板。折流板的形状和间距对壳程流体的流动和传热具有重要影响。2 k, J+ G: k) j( % P 通常弓形缺口的高度约为壳体直径的10%40%,一般取20%25%。两相邻折流板的间距也需选择适当,间距过大,则不能保证流体垂直流过管束,流速减小,对流传热系数降低;间距过小,则流动阻力增大,也不利于制造和检修。一般折流板的间距取为壳体内径的20%100%。( A c0 P t H7 0 l5 n1 u- D七、 换热器中传热与流体流动阻力计算w+ q$ G# q4 B, c 有关列管式换热器的传热计算可按已选定的结构型式,按前一章相关内容,根据传热过程各个环节分别计算出两侧流体的对流传热热阻及导热热阻,得到总传热系数,再按本章前述内容进行换热器传热计算。% a9 _ d; o4 l9 S: m8 & L* 6 J 列管式换热器中流动阻力计算应按壳程和管程两个方面分别进行。它与换热器的结构型式和流体特性有关。一般对特定型式换热器可按经验方程计算,计算式比较繁杂,具体内容可参阅有关的换热器设计教科书或手册。4 S: G8 e6 Y W+ L X; x八、 列管式换热器的选用和设计的一般步骤:0 . G/ j+ 6 ?+ w 列管式换热器的选用和设计计算步骤基本上是一致的,其基本步骤如下:9 i* v- 5 Z6 M: _9 m3 c Y 1估算传热面积,初选换热器型号8 P7 q8 F( l; N- X9 H( X (1) 根据传热任务,计算传热速率;1 K9 9 K$ P% z( h (2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绵阳三诊试题英语及答案
- 漳州校聘面试题及答案
- 系统架构设计师考试文化适应能力的培养试题及答案
- 育婴师科学知识考试试题及答案
- 药剂学考生必知试题及答案
- 医学基础知识科研能力题目与答案
- 电力交易员试题及答案
- 药动学与药效学基本知识试题及答案
- 把握光电工程师证书考试的评估标准试题及答案
- 公基法律试题及答案
- DNM-9602酶标分析仪操作规程
- 四川省宜宾龙文学校2022-2023学年八年级下学期6月检测(期末模拟)历史试卷
- 以退为进的中国惠民保发展-基于73款停售惠民保产品的分析-【复旦许闲】20240719
- 公积金个人贷款合同模板
- 智能纺织技术的家居家纺应用
- DL∕T 5161.14-2018 电气装置安装工程质量检验及评定规程 第14部分:起重机电气装置施工质量检验
- 有机半导体完整版本
- 监护人考试试题
- DL-T5153-2014火力发电厂厂用电设计技术规程
- 山东司法警官职业学院招聘笔试真题2021
- 2024年4月自考00155中级财务会计试题及答案
评论
0/150
提交评论