




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
角平分线的性质,集里中学邓荣超,复习提问,1、角平分线的概念,一条射线,把一个角,分成两个相等的角,,这条射线叫做这个角的平分线。,复习提问,2、点到直线距离:,从直线外一点,到这条直线的垂线段,的长度,,叫做点到直线的距离。,A,O,B,尺规作图:,作法:1、以_为圆心,_长为半径作圆弧,与角的两边分别交于C、D两点;,2、分别以_为圆心,_的长为半径作弧,两条圆弧交于AOB内一点_;,3、作射线_;,_就是所求作的射线。,点O,适当,C、D,超过CD一半,E,OE,OE,观察领悟作法,探索思考证明方法:,A,为什么OC是角平分线呢?,想一想:,已知:OM=ON,MC=NC。求证:OC平分AOB。,证明:在OMC和ONC中,OM=ON,MC=NC,OC=OC,OMCONC(SSS)MOC=NOC即:OC平分AOB,练习1:平分平角AOB。归纳:“过直线上一点作这条直线的垂线”的方法。,作已知角的平分线,将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,可以看一看,第一条折痕是AOB的平分线OC,第二次折叠形成的两条折痕PD,PE是角的平分线上一点到AOB两边的距离,这两个距离相等.,折一折,探究2,角平分线的性质,已知:如图,OC是AOB的平分线,点P在OC上,PDOA,PEOB,垂足分别是D,E。,求证:PD=PE,证明:PDOA,PEOB(已知)PDO=PEO=90(垂直的定义),在PDO和PEO中,PD=PE(全等三角形的对应边相等),PDO=PEOAOC=BOCOP=OP,PDOPEO(AAS),角的平分线上的点到这个角的两边的距离相等。,证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题意,画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出求证的途径,写出证明过程。,角平分线的性质,定理:角的平分线上的点到角的两边的距离相等,用符号语言表示为:,A,O,B,P,1,2,1=2PDOA,PEOBPD=PE(角的平分线上的点到角的两边的距离相等),推理的理由有三个,必须写完全,不能少了任何一个。,角平分线的性质,角的平分线上的点到角的两边的距离相等。,定理应用所具备的条件:,定理的作用:,证明线段相等。,如图,AD平分BAC(已知),=,(),在角的平分线上的点到这个角的两边的距离相等。,BDCD,(),判断:,练习2,如图,DCAC,DBAB(已知),=,(),在角的平分线上的点到这个角的两边的距离相等。,BDCD,(),AD平分BAC,DCAC,DBAB(已知),=,(),在角的平分线上的点到这个角的两边的距离相等。,不必再证全等,练习3,如图,OC是AOB的平分线,又_PD=PE(),PDOA,PEOB,角的平分线上的点到角的两边的距离相等,在OAB中,OE是它的角平分线,且EA=EB,EC、ED分别垂直OA,OB,垂足为C,D.求证:AC=BD.,例题讲解,练习4,在ABC中,C=90,AD为BAC的平分线,DEAB,BC7,DE3.求BD的长。,,,练习5,3.如图,DEAB,DFBC,垂足分别是E,F,DE=DF,EDB=60,则EBF=度,BE=。,60,BF,4如图,在ABC中,C=90,DEAB,1=2,且AC=6cm,那么线段BE是ABC的,AE+DE=。,角的平分线,6cm,5.已知ABC中,C=900,AD平分CAB,且BC=8,BD=5,求点D到AB的距离是多少?,A,B,C,D,E,你会吗?,1如图,在ABC中,C=90AD是BAC的平分线,DEAB于E,F在AC上,BD=DF;求证:CF=EB,巩固提高,3如图,的的外角的平分线与的外角的平分线相交于点求证:点到三边,所在直线的距离相等,F,G,H,更上一层楼!,这节课我们学习了哪些知识?,小结,1、“作已知角的平分线”的尺规作图法;,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中篮球教学课件
- 超轻粘土贴画课件
- 上海音乐学院《公共空间室内设计专题二》2023-2024学年第一学期期末试卷
- 湖南信息学院《奥尔夫音乐活动》2023-2024学年第一学期期末试卷
- 平顶山文化艺术职业学院《电子线路CAD技术A》2023-2024学年第二学期期末试卷
- 吉林工程技术师范学院《中国现代文学理论教学》2023-2024学年第一学期期末试卷
- 2025至2031年中国无硫月桂酸锡稳定剂行业投资前景及策略咨询研究报告
- 湖南冶金职业技术学院《足球Ⅱ》2023-2024学年第二学期期末试卷
- 《中学心理描写作》课件
- 《高中课件特卖》课件
- 酒店式公寓装饰工程施工专项方案(126页)
- 小学音乐国测(国家义务教育质量监测)复习内容
- 器官移植PPT课件
- 茶艺-认识茶具(课堂PPT)
- 生物药物监测检测报告.docx
- 钢丝绳理论重量计算方式
- 第一节二重积分的概念和性质ppt课件
- 国家开放大学《计算机应用基础》终结性考试操作题
- 浒墅关镇社区家长学校工作台帐(模板)
- 电子科技大学自主招生软件工程硕士招生简章 —校外培养点
- 安全生产标准化创建工作启动会(PPT 87页)
评论
0/150
提交评论