陕西黄陵中学高三数学第三次质量检测重点班文_第1页
陕西黄陵中学高三数学第三次质量检测重点班文_第2页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省黄陵中学2018届高三数学下学期第三次质量检测试题(重点班)文第卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(60分)1、设集合,则集合=( )(A) (B) (C) (D) 2.命题则( ) (A) (B) (C) (D) 3.不等式组,所表示平面区域的面积为( ) (A) (B) (C) 1 (D) 34.执行如图所示的程序框图,则输出S的值为( ) (A) 3 (B) 10 (C) (D) 5、双曲线方程为,其中,双曲线的渐近线与圆相切则双曲线的离心率为( )A、 B、 C、 D、6、函数在下列区间单调递增的为( )A、 B、 C、 D、 7、已知正实数满足,当取最小值时,的最大值为A、 2 B、 C、 D、A、 2 B、 C、 D、8、已知函数满足,当时,若在区间上方程有两个不同的实根,则实数的取值范围是( )A、 B、 C、 D、 9.已知等比数列的各项均为正数,若,则的最小值为A. 4 B. 2 C. 1 D. 10.直线经过抛物线的焦点,交抛物线于两点,过,作抛物线的准线的垂线,垂足分别为,若直线的斜率是3,则直线的斜率为A. B. C. D. 11.如图,正方体的棱长为2,是棱的中点,是侧面内一点,若平面,则长度的范围为A. B. C. D. 12.已知函数有2个零点,则A. B. C. D.第卷本卷包括必考题和选考题两部分。第(13)(21)题为必考题,每个试题考生都必须作答。第(22)(23)题为选考题,考生根据要求作答。二、填空题:本大题共4小题,每小题5分。13设变量,满足约束条件,则的最大值为_14若函数是偶函数时,则满足的实数取值范围是_15在锐角中,内角,所对的边分别是,若,则的取值范围是_16数列的前项和,数列满足,则对于任意的正整数,下列结论正确的是_;三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤)17.(本大题满分12分)已知数列的前项和是,且.()求数列的通项公式;()令,求数列前项的和.18.(本大题满分12分)2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段:,,得到如图所示的频率分布直方图.问:()求这80名群众年龄的中位数;()若用分层抽样的方法从年龄在中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在的概率.图419. 如图,三棱柱中,侧面侧面,为棱的中点,为的中点.(1) 求证:平面;(2) 若,求三棱柱的体积.20. 椭圆,是椭圆与轴的两个交点,为椭圆C的上顶点,设直线的斜率为,直线的斜率为,(1)求椭圆的离心率; (2)设直线与轴交于点,交椭圆于、两点,且满足,当的面积最大时,求椭圆的方程21.已知函数.(1)当时,讨论函数的单调性;(2)求函数的极值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知直线 的参数方程为 (为参数),曲线的极坐标方程为 .(1)求曲线的直角坐标方程,并指出该曲线是什么曲线;(2)若直线 与曲线的交点分别为 ,求.23.选修4-5:不等式选讲已知函数.(1)解关于的不等式 ;(2)记函数的最大值为,若,求 的最小值.题号123456789101112答案ADBBADCDDACB13.514.15.16.17解:()由得,于是是等比数列.令得,所以.(),于是数列是首项为0,公差为1的等差数列. ,所以.18. 解()设80名群众年龄的中位数为,则 ,解得,即80名群众年龄的中位数55 ()由已知得,年龄在中的群众有人, 年龄在的群众有人, 按分层抽样的方法随机抽取年龄在的群众人,记为1,2;随机抽取年龄在的群众人, 记为.则基本事件有:, 共20个,参加座谈的导游中有3名群众年龄都在的基本事件有:共4个,设事件为“从这6名群众中选派3人外出宣传黔东南,选派的3名群众年龄都在”,则 19解:(1)连结,因为为正三角形,为棱的中点, 所以,从而,又面面,面面,面,所以面,又面,所以,2分设,由,所以,又,所以,所以,又,所以,设,则, 由及,可得平面. (2)方法一:取中点,连结,则,所以面. 所以, 所以三棱柱的体积为. 方法二:取中点,连结,因为为正三角形,所以,因为面面,面面,面,所以面,又面,所以,又,所以平面,所以为三棱柱的高, 经计算, 所以三棱柱的体积. 20.解:(1), , , (2)由(1)知,得,可设椭圆的方程为: 设直线的方程为:,直线与椭圆交于 两点得 因为直线与椭圆相交,所以,由韦达定理:, 又,所以,代入上述两式有:, 所以 , 当且仅当时,等号成立, 此时, 代入,有成立,所以所求椭圆的方程为: 21.【解析】(1)函数的定义域为,其导数为.当讨论:当时, ,此时:因为时, 递增; 时, 递减;所以,无极小值;当时, ,此时:因为时, 递减; 时, 递增;所以,无极大值;当时, 又在递增,所以在上有唯一零点,且,易证: 时, ,所以,所以又在递减,所以在上有唯一零点,且,故:当时, 递减;当, 递增;当时, 递减;当, 递增; 所以, , ,. (12分)22.解:(1)因为,所以,即,所以曲线表示焦点坐标为,对称轴为轴的抛物线.(2)直线过抛物线的焦点,且参数方程为 ( 为参数),代入曲线的直角坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论