全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
例谈用基本不等式求最值的四大策略摘要基本不等式(当且仅当时等号成立)是高中必修五不等式一章的重要内容之一,也是高考常考的重要知识点。从本质上看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。本文将结合几个实例谈谈运用基本不等式求最值的三大策略。关键字:基本不等式 求和与积的最值 策略 一、 基本不等式的基础知识1基本不等式:如果,则,当且仅当时等号成立。在基本不等式的应用中,我们需要注意以下三点:“一正”:、b是正数,这是利用基本不等式求最值的前提条件。“二定”:当两正数的和是定值时,积有最大值;当两正数的积是定值时,和有最小值。“三相等”: 是的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。二、 利用基本不等式求最值的四大策略策略一 利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。题型一 配凑系数例1 设,求函数的最大值。分析:因为不是个定值,所以本题无法直接运用基本不等式求解。但凑系数将4拆为后可得到和为定值,从而可利用基本不等式求其最大值。解:因为 ,所以 故当且仅当即时等号成立.所以原式的最大值为.题型二 配凑项1 配凑常数项例2 已知,求函数的最大值。2分析:因,所以首先要“调整”符号。另外,又不是常数,所以对要进行拆、凑项。解:因为,所以 所以 所以当且仅当,即时,上式等号成立,故当时,y取最大值1.2 配凑一般项例3 (2010年高考四川文科卷第11题)设,则的最小值是( )(A)1 (B)2 (C)3 (D)4分析:如果要利用基本不等式来求和的最小值,就必须出现积的定值。考虑到, 即,所以配凑这两项。解:因为,所以,故而,所以故w224当且仅当ab1,a(ab)1时等号成立,如取a,b,式子取得最小值4.故选择答案D策略二 遇到分式,可尝试分离后再用基本不等式题型一:配凑分子,分离分式对于分子次数比分母高的分式不等式,可尝试先对分子进行配凑,使之出现与分母相同的项,然后分离得到可用基本不等式求解的结构。例4 求的最小值。2分析:可先将分子配凑出含有的项,再将其分离。解:因为,所以所以当且仅当所以的最小值为2.题型二:同除分子,分离分母对于分母次数比分子高的分式不等式,可尝试上下同除以分子,使分母出现互倒的结构,再用基本不等式求最值。例5 求的值域.分析:题目没有交代的取值范围,此题需要分类讨论。解:当时,分子分母同除以,则(1) 当,所以, 当且仅当(2) 当,故,当且仅当当,=0综上可知,y的取值范围是策略三 遇到根式,可尝试平方后再用基本不等式例6 求函数的最大值.分析:观察式子的结构,可以看到,所以将式子平方后,便可构造出可用基本不等式的结构。解:将两边平方,得又因为y0,所以当且仅当2,即所以y的最大值是.策略四 利用1的性质,合理代换后再用基本不等式“1”是一个特殊的数,任何式子乘以1,式子仍不变。所以如果题目条件给出某个式子的值为1,则可在要求最值的式子上乘以这个式子,从而构造出可用基本不等式的形式。例7 设,且,求的最小值.分析:由于,所以=,故可用基本不等式求最值.解:由于,所以=又由于,故所以=,当且仅当所以,原式的最小值为2.总结以上四种策略,是用基本不等式解决最值问题的常用方法。无论是配凑系数与项、分离分子与分母、平方去根号,还是利用“1”整体代换,其目的只有一个,那就是构造出和为定值或者是积为定值的两项,然后才可用基本不等式。构造可用基本不等式的结构,是解决此类最值问题的根本所在。参考文献1人民教育出版社 普通高中课程标准实验教科书 数学必修5A版 2004.5第一版
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁中医药大学《C程序设计及医学应用》2023-2024学年第一学期期末试卷
- 兰州理工大学《医学实验基本技术与设备》2023-2024学年第一学期期末试卷
- 集美大学《口腔人文医学》2023-2024学年第一学期期末试卷
- 湖南文理学院芙蓉学院《社会保障发展前沿》2023-2024学年第一学期期末试卷
- 湖南高速铁路职业技术学院《世界建筑装饰风格与流派》2023-2024学年第一学期期末试卷
- 重庆邮电大学《计算机学科课程教学论》2023-2024学年第一学期期末试卷
- 重庆健康职业学院《工程造价及管理》2023-2024学年第一学期期末试卷
- 中原工学院《软件质量保证与测试实验》2023-2024学年第一学期期末试卷
- 浙江农林大学暨阳学院《野生动植物保护与管理》2023-2024学年第一学期期末试卷
- 中国石油大学(华东)《表演基础元素训练》2023-2024学年第一学期期末试卷
- 河南省郑州外国语高中-【高二】【上期中】【把握现在 蓄力高三】家长会【课件】
- 2025年中煤电力有限公司招聘笔试参考题库含答案解析
- 企业内部控制与财务风险防范
- 高端民用航空复材智能制造交付中心项目环评资料环境影响
- 建设项目施工现场春节放假期间的安全管理方案
- 胃潴留护理查房
- 污水处理厂运营方案计划
- 眼科慢病管理新思路
- 刘先生家庭投资理财规划方案设计
- 宠物养护与经营-大学专业介绍
- DB22T 3268-2021 粮食收储企业安全生产标准化评定规范
评论
0/150
提交评论