已阅读5页,还剩53页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,概率论与数理统计第10讲,本文件可从网址上下载,2,连续型随机变量的分布,一随机变量的分布函数是描述任何类型的随机变量的变化规律的最一般的形式,但由于它不够直观,往往不常用。比如,对离散型随机变量,用概率函数来描述即简单又直观。,3,对于连续型随机变量也希望有一种比分布函数更直观的描述方式。这就是今天要讲的“概率密度函数”,4,例在区间4,10上任意抛掷一个质点,用X,表示这个质点和原点的距离,则X是一随机变量,如果这个质点落在4,10上任一子区间内的概率与这个区间的长度成正比,求X的分布函数.,4,10,x,5,6,解X可以取4,10上的一切实数,即,4X10是一个必然事件,P4X10=1,若c,d4,10,有PcXd=(d-c),为比例常数,特别地,取c=4,d=10,P4X10=(10-4)=6=1,因此=1/6.,7,因此X的分布函数就是,8,F(x)的图形如下所示,1,9,在这里,,分布函数F(x)是(-,+)上的一个非降有界的连续函数,在整个数轴上没有一个跳跃点(可见,对于这样的随机变量,它取任何一个具体值的概率都是零).这就是这种类型的随机变量被称作是连续型随机变量的原因.,10,描述连续型随机变量当然不能够用概率函数或者概率分布表.但是使用分布函数F(x)同样也是不很方便.因此,用概率密度函数来描述连续型随机变量的分布.,11,定义对于连续型随机变量X,如果存在一定义在(-,+)上的非负函数f(x),对于任意实数x都有f(x)0,且满足,X落在任意区间内的概率为f(x)在此区间的积分,即,则称f(x)为X的概率密度函数,或称为概率密度或密度函数,记作Xf(x).,12,用概率密度函数计算X落在任何区间内的概,率如下图所示意.,a,b,x,0,f(x),PaXb,13,因此,概率密度函数的两个性质,一个是f(x)0,另一个则是,x,0,f(x),14,概率密度函数f(x)与分布函数F(x)的关系为,x,0,f(x),x,15,16,进一步剖析可得,x,0,f(x),x,x+x,17,这表明f(x)不是X取值x的概率,而是它在x点概率分布的密集程度.,18,在前例中X的概率密度函数f(x)为,19,20,例若X有概率密度,则称X服从区间a,b上的均匀分布,记作XU(a,b)试求F(x).,21,解因为,22,f(x)的图形为,求分布函数F(x)则是根据公式,0,a,b,x,f(x),23,当xa时,0,a,b,x,f(x),x,24,当axb时,0,a,b,x,f(x),x,27,28,综上所述,最后得分布函数为,29,F(x)与f(x)的图形对照如下:,0,a,b,x,f(x),0,a,b,x,F(x),1,30,31,例已知连续型随机变量X有概率密度,求系数k及分布函数F(x),并计算P1.5X2.5,32,解因,33,则f(x)为,34,f(x)的图形为,35,36,x,当x0时,37,x,当0x2时,x,39,综合前面最后得,40,F(x)的图形为,1,2,0,x,F(x),41,概率密度函数f(x)与分布函数F(x)对照,42,现根据概率密度函数和分布函数分别计算概率P1.5X2.5根据分布函数计算:P1.5X2.5=P1.5X2.5-P(X=2.5)=F(2.5)-F(1.5)-0=1-(1.52/4)+1.5=1-0.9375=0.0625,43,根据概率密度函数进行计算则是,44,用两种方法计算P1.5X2.5的示意图,1.5,1.5,0.0625,2.5,2.5,0.0625,45,定义(数学上随机变量的严格定义),如果每次试验的结果,也就是每一个样本点e,都对应着一个确定的实数X,并且对于任何实数x,Xx有确定的概率,称X为随机变量.(之所以要这样定义还牵涉到数学上的实变函数理论,可测集理论.但简而言之,这样定义的随机变量能够保证我们一般关心的X在实数轴上的事件都存在着概率.),46,实际上,连续型随机变量X的存在给数学家们带来了很大的麻烦,因为,当任意两个实数a,b不相同时,即当ab,事件X=a和事件X=b是互不相容的,而且连续型随机变量X取任何单个的实数的概率为0.,47,可是X落在某一区间内的事件实际上是由所有的等于此区间内的每一个实数的事件的并,这样就出现了无限多个概率为0的事件的并的事件的概率却不为0,即加法法则不成立.因此数学家们就只好宣布可列可加性,而不可列可加性则不成立.,48,在创建概率论体系之初,人们是认为概率为0的事件就是不可能事件.但连续型随机变量取任何一个具体值的概率都是0,却是可能事件.这也逼得数学家们不得不宣布概率为0的事件并不一定是不可能事件.,49,例1设随机变量X具有概率密度,(1)确定常数k;(2)求X的分布函数F(x);(3)求P1X7/2,50,解(1)由得,解得k=1/6,于是X的概率密度为,51,f(x),52,53,(2)X的分布函数为,54,55,(3),或P1X7/2=F(7/2)-F(1)=41/48.,56,例2设随机变量X的分布函数为,求(1)概率P0.3X0.7;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024建筑临时工劳动合同范本
- 2024航空货运合同样本
- 急性一氧化碳中毒急救护理课件
- 《住宅工程质量通病防治技术规程》
- 云南省红河哈尼族彝族自治州(2024年-2025年小学五年级语文)统编版综合练习(上学期)试卷及答案
- 《物流成本管理》电子教案
- 2024简单农产品购销合同样本
- 2024家政保姆合同范文
- 2024工矿产品购销合同范本
- 浙江省金华市(2024年-2025年小学五年级语文)统编版阶段练习((上下)学期)试卷及答案
- 《小学英语语法》课件
- 安全生产规章制度和岗位操作规程的目录清单及内容(无仓储经营单位)
- 建构主义视角下幼儿园中班阅读区创设与指导研究
- 小学英语五年级上册Unit 3 Part A Let's talk 教学设计2
- 托管安全责任承诺书范文(19篇)
- -常规化验单解读
- BYK-润湿分散剂介绍
- 急性严重创伤抢救流程图
- 家长进课堂小学生建筑知识课件
- 人身保险合同纠纷原告方代理词(参考范本)
- 铁路安全生产管理问题及措施
评论
0/150
提交评论