已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档全等三角形知识点梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形的对应边上的高、中线对应相等。(4)全等三角形对应角的角平分线相等;(5)全等三角形的周长和面积相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。(SSS)(2)两角和它们的夹边对应相等的两个三角形全等。(ASA)(3)两角和其中一角的对边对应相等的两个三角形全等。(AAS)(4)两边和它们的夹角对应相等的两个三角形全等。(SAS)(5)斜边和一条直角边对应相等的两个直角三角形全等。(HL)4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。3、要善于灵活选择适当的方法判定两个三角形全等。(1)已知条件中有两角对应相等,可找: 夹边相等(ASA)任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找: 夹角相等(SAS)第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找: 任一组角相等(AAS 或 ASA)夹等角的另一组边相等(SAS) 注意:判定两个三角形全等必须具备的三个条件中“边”是不可缺少的,边边角(SSA)和角角角(AAA)不能作为判定两个三角形全等的方法。证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证 明的问题)。常见考法:(1)利用全等三角形的性质:证明线段(或角)相等;证明两条线段的和差等于另一条线段;证明面积相等;(2)利用判定公理来证明两个三角形全等;(3)题目开放性问题,补全条件,使两个三角形全等。老师误区提醒:(1)忽略题目中的隐含条件;(2)不能正确使用判定公理。全等三角形常见题型分类练习全等三角形性质的应用类型一.全等三角形的基本性质应用1下列命题正确的是( )A全等三角形是指形状相同的两个三角形 B全等三角形是指面积相同的两个三角形C两个周长相等的三角形是全等三角形 D全等三角形的对应边相等、对应角相等2. 如图1,ABDCDB,且AB、CD是对应边;下面四个结论中不正确的是:( )A.ABD和CDB的面积相等 B.ABD和CDB的周长相等C.A+ABD =C+CBD D.AD/BC,且AD = BC3.(2009海南)如图所示,已知图中的两个三角形全等,则度数是( )A.72 B.60 C.58 D.50第2题 第3题4.(2009陕西)如图,=30,则的度数为( )A20 B30C35 D40 5如图,ABCAEF,AB和AE,AC和AF是对应边,那么BAE等于 ( ) AACBBBAFCFDCAF6已知ABCEFG,有B=70,E=60,则C=( )A 60 B 70 C 50 D 657(2009清远)如图,若,且,则= 8ABC中,ABC432,且ABCDEF,则E_第4题 第5题 第7题 9(2009邵阳)如图,将RtABC(其中B34,C90)绕A点按顺时针方向旋转到AB1 C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小等于( )A.56 B.68 C.124 D.180C1第9题 第12题10一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=_11已知ABCDEF,DEF的周长为32 cm,DE=9 cm,EF=12 cm则AB=_,BC=_,AC=_12如图,在正方形网格上有一个ABC在网格中作一个与它全等的三角形;如每一个小正方形的边长为1,则ABC的面积是 全等三角形的证明【基础应用】1(2009年江苏省)如图,给出下列四组条件:; ; 其中,能使的条件共有( )A1组 B2组 C3组 D4组2.如图,在ABC与DEF中,已有条件AB=DE,还需添加两个条件才能使ABCDEF,不能添加的一组条件是( ) A.B=E,BC=EF B.BC=EF,AC=DF C.A=D,B=E D.A=D,BC=EF3.(2009广西)如图,在等腰梯形ABCD中,ABDC,AC、BD交于点O,则图中全等三角形共有( )A2对 B3对 C4对 D5对 第1、2题 第3题4.如图:AB=DC,BE=CF,AF=DE。求证:ABEDCF。5如图:AB=AC,MEAB,MFAC,垂足分别为E、F,ME=MF。求证:MB=MC6.如图,1=2,ABC=DCB。求证:AB=DC。7. 已知BE=ED,1=2,求证:ABECDE8.如图;AB=AC,BF=CF。求证:B=C。9.如图:在ABC中,ADBC于D,AD=BD,CD=DE,E是AD上一点,连结BE并延长交AC于点F。 求证:(1)BE=AC,(2)BFAC。【能力提高】类型一、平行线性质的应用1.如图:ACEF,AC=EF,AE=BD。 求证:ABCEDF。2.如图(8)A、B、C、D四点在同一直线上,AC=DB,BECF,AEDF。求证:ABEDCF。3.(2009武汉)如图,已知点E、C在线段BF上,BE=CF,ABDE,ACB=F求证:4.如图,AC和BD相交于点O,OA=OC,OB=OD.求证DCAB.5.如图,点B,E,C,F在一条直线上,FB=CE,ABED,ACFD.求证AB=DE,AC=DF.6.(2009黄石)如图,C、F在BE上,A=D,ACDF,BF=EC求证:AB=DE7.如图(16)ADBC,AD=BC,AE=CF。求证:(1)DE=DF,(2)ABCD。类型三、角平分线性质应用1如图,ABC中,C = 90,AC = BC,AD是BAC的平分线,DEAB于E,若AC = 10cm,则BD+DE=( )A10cm B8cm C6cm D9cm2尺规作图作AOB的平分线方法:以为O圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于长为半径画弧,两弧交于点P,作射线OP,由作法得的根据是( )A SAS BASA CAAS DSSS 3.如图, C=90,AD平分BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为( )A. 5cm B. 3cm C. 2cm D. 不能确定第1题 第2题 第3题 4如图,OP平分AOB,PAOA,PBOB垂足分别为A,B下列结论中不一定成立的是( )APA=PB BPO平分APB COA=OB DAB垂直平分OP5如图,在ABC中,AC=BC,ACB=90AD平分BAC,BEAD交AC的延长线于F,E为垂足则结论:AD=BF;CF=CD;AC+CD=AB;BE=CF;BF=2BE,其中正确结论的个数是( )A1 B.2 C3 D46.如图,在ABC中,C=90,AC=BC,AD平分BAC交BC于D,DEAB于E,且AB=5cm,则DEB的周长为 _第4题 第5题 第6题F7.如图,在ABC中,AD为BAC的平分线,DEAB于E,DFAC于F。求证:DE=DF 8.如图,OM平分POQ,MAOP,MBOQ,A、B为垂足,AB交OM于点N求证:OAB=OBA9.已知:AC平分BAD,CEAB,B+D=180,求证:AE=AD+BE10.如图,ABC中,AD是CAB的平分线,且AB=AC+CD,求证:C=2B类型四、垂直平分线性质应用1如图,在RtABC中,B=90,ED是AC的垂直平分线,交AC于点D,交BC于点E已知BAE=10,则C的度数为( )A B C D2如图,在ABC中,AD为BC边上的中线,若AB=5,AC=3,则AD的取值范围是 。第1题 第2题 3.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD4.如图:A、E、F、B四点在一条直线上,ACCE,BDDF,AE=BF,AC=BD。求证:ACFBDE类型五、添加辅助线(一) 连接四边形的对角线1. 如图,AB/CD,AD/BC,求证:AB=CD。(二)作垂线,利用角平分线的知识1. 如图,AP,CP分别是ABC外角MAC和NCA的平分线,它们交于点P。求证:BP为MBN的平分线。2.如图,在四边形ABCD中,BCBA,ADCD,BD平分ABC,求证: AC1803.如图,中,AB=2AC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶叶品牌发展问题研究报告
- 重庆财经学院《投资银行学》2022-2023学年第一学期期末试卷
- 茶叶加工课程设计
- 重庆财经学院《设计艺术》2021-2022学年第一学期期末试卷
- 重庆财经学院《企业资源计划》2021-2022学年第一学期期末试卷
- 2021一级建造师考试《建设工程项目管理》章节习题及答案解析
- 茶与德育 课题研究报告
- 重庆财经学院《房屋构造与维护管理》2023-2024学年第一学期期末试卷
- 重庆财经学院《大学体育》2023-2024学年第一学期期末试卷
- 策划年会方案文案
- 介绍鲁滨逊课件
- 彩色喷涂产线项目可行性研究报告写作模板-拿地申报
- 2024年园林绿化建设合同
- 2024-2030年中国吸气剂(消气剂)产业前景预测及发展风险分析报告
- 《食品经营许可证》延续申请表
- 2022年国家公务员考试《行测》真题(行政执法)及答案解析
- 2024年山东省东营市中考语文试题含解析
- 小学五年级上学期科学《心脏和血液》教案
- 2024年招商引资居间合同
- 媒体创意经济:玩转互联网时代学习通超星期末考试答案章节答案2024年
- 译林版(2024新版)七年级上册英语期中复习:完形填空10空18篇练习题(含答案解析)
评论
0/150
提交评论