高数复习重点(谨以此献给倒霉的法学院和商院).doc_第1页
高数复习重点(谨以此献给倒霉的法学院和商院).doc_第2页
高数复习重点(谨以此献给倒霉的法学院和商院).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文档系作者精心整理编辑,实用价值高。高数复习重点(谨以此献给倒霉的法学院和商院) 第一章 1)洛必达法则求极限,最常用,要熟练; 2)无穷小代换求极限,在解题中非常有用,几个等价公式要倒背如流; 3)求含参数的极限,关键是把握常量变量的关系,求解过程体现你极限计算的基本功; 4)1的次方的极限是重点,多练几个题; 5)函数连续计算中要会对点进行修改定义、补充定义,看看书上怎么写的,给你说句话你体会一下,“连续的概念是逐点概念”,所以问题就是围绕特殊点展开的,这是数学思想了; 6)闭区间连续函数性质四定理非常重要,把它们背下来,然后结合例题搞定; 7)记住趋向不同,结果就大不一样的极限; 8)两个重要极限、两个基本极限 把它们的推倒过程多写写,记住;关键还是刚才的要点,一个是用e的抬头法,一个是注意“趋向不同,结果就大不一样的极限”,还有注意lnx的定义域0; 9)要注意存在与任意的关系,存在就是说只要有一个符合就成立,任意是说只要有一个不符合就不成立,你体会体会。例题:无穷大无穷小 有界变量无界变量; 10)注意夹逼定理的条件很强,不要漏掉要点;11)“见根号差,用有理化”! 这是思维定势,很管用; 第二章 1) 导数的概念非常重要!一定会在解答题(主观题)中让你展现出你对它的理解是透彻的,所以这里不要用什么特殊化思想,就是严格按照定义来演算推理; 2) 导数公式倒背如流的要求不算过分吧 呵呵; 3) 连续可导的要求一个弱一个强,只要改变条件的强弱就会有截然不同的做法,你做题的时候一定要总结一下,回顾一下,看看条件的强弱问题,然后在每个题上标记出来,便于以后再复习; 4) 由于有些函数求导会出现x在分母上出现,所以要知道:即使不是分段函数,有时也要用定义去求导,而且乘积中某个因子在某点不可导,但乘积在该点也可能可导; 5) 中值定理的难点在于构造辅助函数,构造函数是根据题目的要求来的,除了陈文灯等人写的方法外,关键是多看例题,熟练了,自然就会了(我上次给同学们说的是“微分方程法”和“凑”法,这两个掌握了就足够了); 6) 函数性态部分是基本功,一定要耐心的按照函数作图的几大步骤认真做几个题,这样就可以把函数的各种性态串起来了,方法:抄例题,然后背下来,自己默一遍; 7) 三个式子的不等事,即A 8) 能用微分中值定理的,一般用积分中值定理也可以搞定,你也试试吧,体会一下数学思想和定理的联系,是有好处的; 9) 这部分的经济应用题不难,关键是仔细一些,对弹性等概念理解好,你经济学的好的多了,我就不说了:); 第三章 1) 一元函数积分是高等数学中最重要的部分之一,一元函数的积分不学扎实,后面的多元函数的积分就是空中楼阁,要熟练掌握各种积分方法和几种常见的积分类型,如有理函数,三角函数的有理式和简单无理函数的积分; 2) 给你说几个准公式: ; ; ,作题时相当有用的哦,关键是反过来用你要有意识; 3) 这里特别提醒注意积分限函数,一句话:“积分限x在积分过程中是常量,在积分完毕后是变量”,这是核心的东西,抓住它就不会迷失方向; 4) 旋转体的体积看来是一定要考了,当然是重点,关键:一个是公式记清,应该是绕x轴还是y轴都要搞的清清楚楚,另一个就是体会移图和移轴的不同,这里要用到积分的计算,是体现基本功的地方; 5) 积分在经济中的应用也是重重之重,记清概念,把握公式,清醒审题,仔细答题,搞定; 6) 广义积分关键是计算,不是证明!记住重点; 7) 广义积分中积分函数是加减函数时不能将加减函数拆开分别积分,应将加减函数整体积分。积分上下限代入积分函数若无意义,则理解为取极限,你做做这个题就明白了:I= . 8) 其实广义积分和定积分的概念很容易搞清,一句话:定积分存在有两个必要条件,即积分区间有限,被积函数有界。破坏了积分区间有限,引出无穷区间上的广义积分,破坏了被积函数有界,引出无界函数的广义积分。 9) 把握住上面的这句话,就可以不晕了,看出来了吧,基本概念非常清楚的人才能学好; 10) 定积分是一个数!这是一个经常命题的地方,好记吗?那就记住吧; 11) 不定积分去根号时不用考虑绝对值,而定积分去根号时则要考虑绝对值!这个好错,一定要记住,会的可不要错哦,不然就惨喽; 12) 经验一个:三角有理函数式的积分,若有理函数式分母为 ,则可以通过分子分母同时乘上一个式子,使分母变为积的形式,另外,还可以直接变形为积的形式来求解 13) 被积函数只要是可以看成两个不同类函数的积,就要优先考虑分步积分法,经验哦:); 14) 这里提一下,对于选择题中的抽象函数问题,我个人的认识是:将复杂的形式化成简单的形式,比如对抽象复合函数做变量替换,与其说是一种技巧方法,不如说是一条普遍的规律,任何事物都有由繁到简的趋势,这是可以上升到哲学层面的认识问题,(哈哈,这是英语学多了,not so muchas用了一下); 15) 一个经验:如果在一个函数或者积分等中的函数,当它是同一个x的函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论