




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.1立体几何中的向量方法方向向量与法向量,A,P,直线的方向向量,直线的向量式方程,换句话说,直线上的非零向量叫做直线的方向向量,一、方向向量与法向量,2、平面的法向量,l,平面的向量式方程,换句话说,与平面垂直的非零向量叫做平面的法向量,.,例1.如图所示,正方体的棱长为1直线OA的一个方向向量坐标为_平面OABC的一个法向量坐标为_平面AB1C的一个法向量坐标为_,(-1,-1,1),(0,0,1),(1,0,0),.,.,.,练习如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC=1,E是PC的中点,求平面EDB的一个法向量.,A,B,C,D,P,E,解:如图所示建立空间直角坐标系.,设平面EDB的法向量为,.,因为方向向量与法向量可以确定直线和平面的位置,所以我们可以利用直线的方向向量与平面的法向量表示空间直线、平面间的平行、垂直、夹角、距离等位置关系.,用向量方法解决立体问题,.,二、立体几何中的向量方法证明平行与垂直,.,m,l,(一).平行关系:,.,.,.,(二)、垂直关系:,l,m,.,l,A,B,C,.,.,例1.用向量方法证明定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行,已知直线l与m相交,.,例2四棱锥P-ABCD中,底面ABCD是正方形,PD底面ABCD,PD=DC=6,E是PB的中点,DF:FB=CG:GP=1:2.求证:AE/FG.,A,B,C,D,P,G,F,E,A(6,0,0),F(2,2,0),E(3,3,3),G(0,4,2),AE/FG,证:如图所示,建立空间直角坐标系.,/,AE与FG不共线,几何法呢?,.,例3四棱锥P-ABCD中,底面ABCD是正方形,PD底面ABCD,PD=DC,E是PC的中点,(1)求证:PA/平面EDB.,A,B,C,D,P,E,解1立体几何法,.,A,B,C,D,P,E,解2:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1,(1)证明:连结AC,AC交BD于点G,连结EG,.,A,B,C,D,P,E,解3:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1,(1)证明:,设平面EDB的法向量为,.,A,B,C,D,P,E,解4:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1,(1)证明:,解得x,.,证明:设正方体棱长为1,为单位正交基底,建立如图所示坐标系D-xyz,,所以,.,证明2:,.,E是AA1中点,,例5正方体,平面C1BD.,证明:,E,求证:平面EBD,设正方体棱长为2,建立如图所示坐标系,平面C1BD的一个法向量是,E(0,0,1),D(0,2,0),B(2,0,0),设平面EBD的一个法向量是,平面C1BD.,平面EBD,.,证明2:,E,E是AA1中点,,例5正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 遗传学课程内容更新与跨学科融合的创新模式
- 激励社会力量参与老年助餐服务的可行路径
- 心理健康课思维导图
- 石油化工企业经营管理方案
- 构建美育教育新生态的策略及实施路径
- 高中生自我控制与学业拖延的关系研究-学习投入的中介作用
- 大数据在旅游成本控制中的应用
- 关键岗位考试试题及答案
- 防暑安全教育试题及答案
- 刀工考试试题及答案
- 江西省南昌市西湖区2023-2024学年五年级下学期期末数学试题
- 植物拓染非物质文化遗产传承拓花草之印染自然之美课件
- TD/T 1044-2014 生产项目土地复垦验收规程(正式版)
- 雾化吸入团体标准解读
- MOOC 质量工程技术基础-北京航空航天大学 中国大学慕课答案
- 【数字人民币对货币政策的影响及政策探究12000字(论文)】
- 江苏省盐城市大丰区2023-2024学年八年级上学期期中数学试题(解析版)
- 内分泌系统疾病教学设计教案1
- 卫生监督协管培训课件
- 2.3.5 重力坝扬压力计算示例讲解
- 高校资助育人系列活动方案
评论
0/150
提交评论